TSTP Solution File: GRP710-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP710-10 : TPTP v8.1.0. Released v8.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:42 EDT 2022

% Result   : Unsatisfiable 1.90s 2.10s
% Output   : Refutation 1.90s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   24 (  24 unt;   0 nHn;   3 RR)
%            Number of literals    :   24 (  23 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   3 con; 0-2 aty)
%            Number of variables   :   34 (   2 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    mult(x0,A) != x1,
    file('GRP710-10.p',unknown),
    [] ).

cnf(4,axiom,
    mult(A,unit) = A,
    file('GRP710-10.p',unknown),
    [] ).

cnf(6,axiom,
    mult(unit,A) = A,
    file('GRP710-10.p',unknown),
    [] ).

cnf(7,axiom,
    mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C),
    file('GRP710-10.p',unknown),
    [] ).

cnf(8,plain,
    mult(mult(mult(A,B),B),C) = mult(A,mult(B,mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(11,axiom,
    mult(A,i(A)) = unit,
    file('GRP710-10.p',unknown),
    [] ).

cnf(12,axiom,
    mult(i(A),A) = unit,
    file('GRP710-10.p',unknown),
    [] ).

cnf(18,plain,
    mult(A,mult(i(A),mult(i(A),B))) = mult(i(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,11]),6])]),
    [iquote('para_into,8.1.1.1.1,10.1.1,demod,6,flip.1')] ).

cnf(23,plain,
    mult(mult(A,A),B) = mult(A,mult(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,6]),6]),
    [iquote('para_into,8.1.1.1.1,5.1.1,demod,6')] ).

cnf(29,plain,
    mult(mult(A,B),B) = mult(A,mult(B,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,4]),4]),
    [iquote('para_into,8.1.1,3.1.1,demod,4')] ).

cnf(32,plain,
    mult(mult(A,mult(B,B)),C) = mult(A,mult(B,mult(B,C))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[8]),29]),
    [iquote('back_demod,8,demod,29')] ).

cnf(34,plain,
    mult(A,mult(A,i(mult(A,A)))) = unit,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[23,11])]),
    [iquote('para_into,22.1.1,10.1.1,flip.1')] ).

cnf(39,plain,
    mult(A,mult(i(A),i(A))) = i(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[18,4]),4]),
    [iquote('para_into,18.1.1.2.2,3.1.1,demod,4')] ).

cnf(42,plain,
    mult(i(x0),A) != x1,
    inference(para_from,[status(thm),theory(equality)],[18,1]),
    [iquote('para_from,18.1.1,1.1.1')] ).

cnf(107,plain,
    mult(i(A),i(mult(i(A),i(A)))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[34,18]),4])]),
    [iquote('para_from,34.1.1,18.1.1.2,demod,4,flip.1')] ).

cnf(111,plain,
    mult(A,mult(A,mult(i(mult(A,A)),i(mult(A,A))))) = i(mult(A,A)),
    inference(para_into,[status(thm),theory(equality)],[39,23]),
    [iquote('para_into,38.1.1,22.1.1')] ).

cnf(115,plain,
    i(i(A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[39,18]),11,4,39])]),
    [iquote('para_from,38.1.1,18.1.1.2.2,demod,11,4,39,flip.1')] ).

cnf(121,plain,
    mult(i(A),mult(A,mult(A,B))) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[115,18]),115,115]),
    [iquote('para_from,114.1.1,18.1.1.2.1,demod,115,115')] ).

cnf(141,plain,
    mult(A,i(mult(A,A))) = i(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[107,115]),115,115]),
    [iquote('para_into,107.1.1.1,114.1.1,demod,115,115')] ).

cnf(147,plain,
    mult(A,mult(i(mult(A,A)),i(mult(A,A)))) = mult(i(A),i(mult(A,A))),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[141,29])]),
    [iquote('para_from,140.1.1,28.1.1.1,flip.1')] ).

cnf(149,plain,
    mult(A,mult(i(A),i(mult(A,A)))) = i(mult(A,A)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[111]),147]),
    [iquote('back_demod,111,demod,147')] ).

cnf(192,plain,
    i(mult(A,A)) = mult(i(A),i(A)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[149,121]),141,149])]),
    [iquote('para_from,148.1.1,120.1.1.2.2,demod,141,149,flip.1')] ).

cnf(211,plain,
    mult(i(A),mult(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[32,12]),6,192,23,121])]),
    [iquote('para_into,32.1.1.1,12.1.1,demod,6,192,23,121,flip.1')] ).

cnf(213,plain,
    $false,
    inference(binary,[status(thm)],[211,42]),
    [iquote('binary,211.1,42.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.11  % Problem  : GRP710-10 : TPTP v8.1.0. Released v8.1.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n023.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:54:33 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.90/2.10  ----- Otter 3.3f, August 2004 -----
% 1.90/2.10  The process was started by sandbox on n023.cluster.edu,
% 1.90/2.10  Wed Jul 27 05:54:33 2022
% 1.90/2.10  The command was "./otter".  The process ID is 5515.
% 1.90/2.10  
% 1.90/2.10  set(prolog_style_variables).
% 1.90/2.10  set(auto).
% 1.90/2.10     dependent: set(auto1).
% 1.90/2.10     dependent: set(process_input).
% 1.90/2.10     dependent: clear(print_kept).
% 1.90/2.10     dependent: clear(print_new_demod).
% 1.90/2.10     dependent: clear(print_back_demod).
% 1.90/2.10     dependent: clear(print_back_sub).
% 1.90/2.10     dependent: set(control_memory).
% 1.90/2.10     dependent: assign(max_mem, 12000).
% 1.90/2.10     dependent: assign(pick_given_ratio, 4).
% 1.90/2.10     dependent: assign(stats_level, 1).
% 1.90/2.10     dependent: assign(max_seconds, 10800).
% 1.90/2.10  clear(print_given).
% 1.90/2.10  
% 1.90/2.10  list(usable).
% 1.90/2.10  0 [] A=A.
% 1.90/2.10  0 [] mult(A,unit)=A.
% 1.90/2.10  0 [] mult(unit,A)=A.
% 1.90/2.10  0 [] mult(A,mult(B,mult(B,C)))=mult(mult(mult(A,B),B),C).
% 1.90/2.10  0 [] mult(A,i(A))=unit.
% 1.90/2.10  0 [] mult(i(A),A)=unit.
% 1.90/2.10  0 [] mult(x0,X2)!=x1.
% 1.90/2.10  end_of_list.
% 1.90/2.10  
% 1.90/2.10  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.90/2.10  
% 1.90/2.10  All clauses are units, and equality is present; the
% 1.90/2.10  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.90/2.10  
% 1.90/2.10     dependent: set(knuth_bendix).
% 1.90/2.10     dependent: set(anl_eq).
% 1.90/2.10     dependent: set(para_from).
% 1.90/2.10     dependent: set(para_into).
% 1.90/2.10     dependent: clear(para_from_right).
% 1.90/2.10     dependent: clear(para_into_right).
% 1.90/2.10     dependent: set(para_from_vars).
% 1.90/2.10     dependent: set(eq_units_both_ways).
% 1.90/2.10     dependent: set(dynamic_demod_all).
% 1.90/2.10     dependent: set(dynamic_demod).
% 1.90/2.10     dependent: set(order_eq).
% 1.90/2.10     dependent: set(back_demod).
% 1.90/2.10     dependent: set(lrpo).
% 1.90/2.10  
% 1.90/2.10  ------------> process usable:
% 1.90/2.10  ** KEPT (pick-wt=5): 1 [] mult(x0,A)!=x1.
% 1.90/2.10  
% 1.90/2.10  ------------> process sos:
% 1.90/2.10  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.90/2.10  ** KEPT (pick-wt=5): 3 [] mult(A,unit)=A.
% 1.90/2.10  ---> New Demodulator: 4 [new_demod,3] mult(A,unit)=A.
% 1.90/2.10  ** KEPT (pick-wt=5): 5 [] mult(unit,A)=A.
% 1.90/2.10  ---> New Demodulator: 6 [new_demod,5] mult(unit,A)=A.
% 1.90/2.10  ** KEPT (pick-wt=15): 8 [copy,7,flip.1] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.90/2.10  ---> New Demodulator: 9 [new_demod,8] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.90/2.10  ** KEPT (pick-wt=6): 10 [] mult(A,i(A))=unit.
% 1.90/2.10  ---> New Demodulator: 11 [new_demod,10] mult(A,i(A))=unit.
% 1.90/2.10  ** KEPT (pick-wt=6): 12 [] mult(i(A),A)=unit.
% 1.90/2.10  ---> New Demodulator: 13 [new_demod,12] mult(i(A),A)=unit.
% 1.90/2.10    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.90/2.10  >>>> Starting back demodulation with 4.
% 1.90/2.10  >>>> Starting back demodulation with 6.
% 1.90/2.10  >>>> Starting back demodulation with 9.
% 1.90/2.10  >>>> Starting back demodulation with 11.
% 1.90/2.10  >>>> Starting back demodulation with 13.
% 1.90/2.10  
% 1.90/2.10  ======= end of input processing =======
% 1.90/2.10  
% 1.90/2.10  =========== start of search ===========
% 1.90/2.10  
% 1.90/2.10  -------- PROOF -------- 
% 1.90/2.10  
% 1.90/2.10  ----> UNIT CONFLICT at   0.01 sec ----> 213 [binary,211.1,42.1] $F.
% 1.90/2.10  
% 1.90/2.10  Length of proof is 17.  Level of proof is 9.
% 1.90/2.10  
% 1.90/2.10  ---------------- PROOF ----------------
% 1.90/2.10  % SZS status Unsatisfiable
% 1.90/2.10  % SZS output start Refutation
% See solution above
% 1.90/2.10  ------------ end of proof -------------
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Search stopped by max_proofs option.
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Search stopped by max_proofs option.
% 1.90/2.10  
% 1.90/2.10  ============ end of search ============
% 1.90/2.10  
% 1.90/2.10  -------------- statistics -------------
% 1.90/2.10  clauses given                 36
% 1.90/2.10  clauses generated            421
% 1.90/2.10  clauses kept                 113
% 1.90/2.10  clauses forward subsumed     358
% 1.90/2.10  clauses back subsumed          0
% 1.90/2.10  Kbytes malloced             1953
% 1.90/2.10  
% 1.90/2.10  ----------- times (seconds) -----------
% 1.90/2.10  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.90/2.10  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.90/2.10  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.90/2.10  
% 1.90/2.10  That finishes the proof of the theorem.
% 1.90/2.10  
% 1.90/2.10  Process 5515 finished Wed Jul 27 05:54:35 2022
% 1.90/2.10  Otter interrupted
% 1.90/2.10  PROOF FOUND
%------------------------------------------------------------------------------