TSTP Solution File: GRP703-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP703-10 : TPTP v8.1.0. Released v8.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:41 EDT 2022

% Result   : Unsatisfiable 1.71s 1.93s
% Output   : Refutation 1.71s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   23 (  23 unt;   0 nHn;   6 RR)
%            Number of literals    :   23 (  22 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :   25 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    mult(op_e,mult(x2,x3)) != mult(mult(op_e,x2),x3),
    file('GRP703-10.p',unknown),
    [] ).

cnf(2,plain,
    mult(mult(op_e,x2),x3) != mult(op_e,mult(x2,x3)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(3,axiom,
    A = A,
    file('GRP703-10.p',unknown),
    [] ).

cnf(4,axiom,
    mult(A,ld(A,B)) = B,
    file('GRP703-10.p',unknown),
    [] ).

cnf(9,axiom,
    mult(rd(A,B),B) = A,
    file('GRP703-10.p',unknown),
    [] ).

cnf(12,axiom,
    mult(A,unit) = A,
    file('GRP703-10.p',unknown),
    [] ).

cnf(14,axiom,
    mult(unit,A) = A,
    file('GRP703-10.p',unknown),
    [] ).

cnf(19,axiom,
    mult(op_c,mult(A,B)) = mult(mult(op_c,A),B),
    file('GRP703-10.p',unknown),
    [] ).

cnf(21,plain,
    mult(mult(op_c,A),B) = mult(op_c,mult(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(22,axiom,
    mult(A,mult(B,op_c)) = mult(mult(A,B),op_c),
    file('GRP703-10.p',unknown),
    [] ).

cnf(24,plain,
    mult(mult(A,B),op_c) = mult(A,mult(B,op_c)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[22])]),
    [iquote('copy,22,flip.1')] ).

cnf(28,axiom,
    op_d = ld(A,mult(op_c,A)),
    file('GRP703-10.p',unknown),
    [] ).

cnf(29,plain,
    ld(A,mult(op_c,A)) = op_d,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[28])]),
    [iquote('copy,28,flip.1')] ).

cnf(31,axiom,
    op_e = mult(mult(rd(op_c,mult(A,B)),B),A),
    file('GRP703-10.p',unknown),
    [] ).

cnf(32,plain,
    mult(mult(rd(op_c,mult(A,B)),B),A) = op_e,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[31])]),
    [iquote('copy,31,flip.1')] ).

cnf(38,plain,
    ld(unit,A) = A,
    inference(para_into,[status(thm),theory(equality)],[4,14]),
    [iquote('para_into,4.1.1,14.1.1')] ).

cnf(66,plain,
    op_d = op_c,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[29,12]),38])]),
    [iquote('para_into,29.1.1.2,12.1.1,demod,38,flip.1')] ).

cnf(69,plain,
    ld(A,mult(op_c,A)) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[29]),66]),
    [iquote('back_demod,29,demod,66')] ).

cnf(83,plain,
    mult(A,op_c) = mult(op_c,A),
    inference(para_from,[status(thm),theory(equality)],[69,4]),
    [iquote('para_from,69.1.1,4.1.1.2')] ).

cnf(84,plain,
    mult(op_c,A) = mult(A,op_c),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[83])]),
    [iquote('copy,83,flip.1')] ).

cnf(120,plain,
    op_e = op_c,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[32,84]),24,9])]),
    [iquote('para_into,32.1.1.1.1.2,84.1.1,demod,24,9,flip.1')] ).

cnf(141,plain,
    mult(op_c,mult(x2,x3)) != mult(op_c,mult(x2,x3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[2]),120,21,120]),
    [iquote('back_demod,2,demod,120,21,120')] ).

cnf(142,plain,
    $false,
    inference(binary,[status(thm)],[141,3]),
    [iquote('binary,141.1,3.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.12  % Problem  : GRP703-10 : TPTP v8.1.0. Released v8.1.0.
% 0.08/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n009.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 05:27:36 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.71/1.93  ----- Otter 3.3f, August 2004 -----
% 1.71/1.93  The process was started by sandbox on n009.cluster.edu,
% 1.71/1.93  Wed Jul 27 05:27:36 2022
% 1.71/1.93  The command was "./otter".  The process ID is 25524.
% 1.71/1.93  
% 1.71/1.93  set(prolog_style_variables).
% 1.71/1.93  set(auto).
% 1.71/1.93     dependent: set(auto1).
% 1.71/1.93     dependent: set(process_input).
% 1.71/1.93     dependent: clear(print_kept).
% 1.71/1.93     dependent: clear(print_new_demod).
% 1.71/1.93     dependent: clear(print_back_demod).
% 1.71/1.93     dependent: clear(print_back_sub).
% 1.71/1.93     dependent: set(control_memory).
% 1.71/1.93     dependent: assign(max_mem, 12000).
% 1.71/1.93     dependent: assign(pick_given_ratio, 4).
% 1.71/1.93     dependent: assign(stats_level, 1).
% 1.71/1.93     dependent: assign(max_seconds, 10800).
% 1.71/1.93  clear(print_given).
% 1.71/1.93  
% 1.71/1.93  list(usable).
% 1.71/1.93  0 [] A=A.
% 1.71/1.93  0 [] mult(A,ld(A,B))=B.
% 1.71/1.93  0 [] ld(A,mult(A,B))=B.
% 1.71/1.93  0 [] mult(rd(A,B),B)=A.
% 1.71/1.93  0 [] rd(mult(A,B),B)=A.
% 1.71/1.93  0 [] mult(A,unit)=A.
% 1.71/1.93  0 [] mult(unit,A)=A.
% 1.71/1.93  0 [] mult(A,mult(B,mult(B,C)))=mult(mult(mult(A,B),B),C).
% 1.71/1.93  0 [] mult(op_c,mult(A,B))=mult(mult(op_c,A),B).
% 1.71/1.93  0 [] mult(A,mult(B,op_c))=mult(mult(A,B),op_c).
% 1.71/1.93  0 [] mult(A,mult(op_c,B))=mult(mult(A,op_c),B).
% 1.71/1.93  0 [] op_d=ld(A,mult(op_c,A)).
% 1.71/1.93  0 [] op_e=mult(mult(rd(op_c,mult(A,B)),B),A).
% 1.71/1.93  0 [] op_f=mult(A,mult(B,ld(mult(A,B),op_c))).
% 1.71/1.93  0 [] mult(op_e,mult(x2,x3))!=mult(mult(op_e,x2),x3).
% 1.71/1.93  end_of_list.
% 1.71/1.93  
% 1.71/1.93  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.71/1.93  
% 1.71/1.93  All clauses are units, and equality is present; the
% 1.71/1.93  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.71/1.93  
% 1.71/1.93     dependent: set(knuth_bendix).
% 1.71/1.93     dependent: set(anl_eq).
% 1.71/1.93     dependent: set(para_from).
% 1.71/1.93     dependent: set(para_into).
% 1.71/1.93     dependent: clear(para_from_right).
% 1.71/1.93     dependent: clear(para_into_right).
% 1.71/1.93     dependent: set(para_from_vars).
% 1.71/1.93     dependent: set(eq_units_both_ways).
% 1.71/1.93     dependent: set(dynamic_demod_all).
% 1.71/1.93     dependent: set(dynamic_demod).
% 1.71/1.93     dependent: set(order_eq).
% 1.71/1.93     dependent: set(back_demod).
% 1.71/1.93     dependent: set(lrpo).
% 1.71/1.93  
% 1.71/1.93  ------------> process usable:
% 1.71/1.93  ** KEPT (pick-wt=11): 2 [copy,1,flip.1] mult(mult(op_e,x2),x3)!=mult(op_e,mult(x2,x3)).
% 1.71/1.93  
% 1.71/1.93  ------------> process sos:
% 1.71/1.93  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.71/1.93  ** KEPT (pick-wt=7): 4 [] mult(A,ld(A,B))=B.
% 1.71/1.93  ---> New Demodulator: 5 [new_demod,4] mult(A,ld(A,B))=B.
% 1.71/1.93  ** KEPT (pick-wt=7): 6 [] ld(A,mult(A,B))=B.
% 1.71/1.93  ---> New Demodulator: 7 [new_demod,6] ld(A,mult(A,B))=B.
% 1.71/1.93  ** KEPT (pick-wt=7): 8 [] mult(rd(A,B),B)=A.
% 1.71/1.93  ---> New Demodulator: 9 [new_demod,8] mult(rd(A,B),B)=A.
% 1.71/1.93  ** KEPT (pick-wt=7): 10 [] rd(mult(A,B),B)=A.
% 1.71/1.93  ---> New Demodulator: 11 [new_demod,10] rd(mult(A,B),B)=A.
% 1.71/1.93  ** KEPT (pick-wt=5): 12 [] mult(A,unit)=A.
% 1.71/1.93  ---> New Demodulator: 13 [new_demod,12] mult(A,unit)=A.
% 1.71/1.93  ** KEPT (pick-wt=5): 14 [] mult(unit,A)=A.
% 1.71/1.93  ---> New Demodulator: 15 [new_demod,14] mult(unit,A)=A.
% 1.71/1.93  ** KEPT (pick-wt=15): 17 [copy,16,flip.1] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.71/1.93  ---> New Demodulator: 18 [new_demod,17] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.71/1.93  ** KEPT (pick-wt=11): 20 [copy,19,flip.1] mult(mult(op_c,A),B)=mult(op_c,mult(A,B)).
% 1.71/1.93  ---> New Demodulator: 21 [new_demod,20] mult(mult(op_c,A),B)=mult(op_c,mult(A,B)).
% 1.71/1.93  ** KEPT (pick-wt=11): 23 [copy,22,flip.1] mult(mult(A,B),op_c)=mult(A,mult(B,op_c)).
% 1.71/1.93  ---> New Demodulator: 24 [new_demod,23] mult(mult(A,B),op_c)=mult(A,mult(B,op_c)).
% 1.71/1.93  ** KEPT (pick-wt=11): 26 [copy,25,flip.1] mult(mult(A,op_c),B)=mult(A,mult(op_c,B)).
% 1.71/1.93  ---> New Demodulator: 27 [new_demod,26] mult(mult(A,op_c),B)=mult(A,mult(op_c,B)).
% 1.71/1.93  ** KEPT (pick-wt=7): 29 [copy,28,flip.1] ld(A,mult(op_c,A))=op_d.
% 1.71/1.93  ---> New Demodulator: 30 [new_demod,29] ld(A,mult(op_c,A))=op_d.
% 1.71/1.93  ** KEPT (pick-wt=11): 32 [copy,31,flip.1] mult(mult(rd(op_c,mult(A,B)),B),A)=op_e.
% 1.71/1.93  ---> New Demodulator: 33 [new_demod,32] mult(mult(rd(op_c,mult(A,B)),B),A)=op_e.
% 1.71/1.93  ** KEPT (pick-wt=11): 35 [copy,34,flip.1] mult(A,mult(B,ld(mult(A,B),op_c)))=op_f.
% 1.71/1.93  ---> New Demodulator: 36 [new_demod,35] mult(A,mult(B,ld(mult(A,B),op_c)))=op_f.
% 1.71/1.93    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.71/1.93  >>>> Starting back demodulation with 5.
% 1.71/1.93  >>>> Starting back demodulation with 7.
% 1.71/1.93  >>>> Starting back demodulation with 9.
% 1.71/1.93  >>>> Starting back demodulation with 11.
% 1.71/1.93  >>>> Starting back demodulation with 13.
% 1.71/1.93  >>>> Starting back demodulation with 15.
% 1.71/1.93  >>>> Starting back demodulation with 18.
% 1.71/1.93  >>>> Starting back demodulation with 21.
% 1.71/1.93  >>>> Starting back demodulation with 24.
% 1.71/1.93  >>>> Starting back demodulation with 27.
% 1.71/1.93  >>>> Starting back demodulation with 30.
% 1.71/1.93  >>>> Starting back demodulation with 33.
% 1.71/1.93  >>>> Starting back demodulation with 36.
% 1.71/1.93  
% 1.71/1.93  ======= end of input processing =======
% 1.71/1.93  
% 1.71/1.93  =========== start of search ===========
% 1.71/1.93  
% 1.71/1.93  -------- PROOF -------- 
% 1.71/1.93  
% 1.71/1.93  ----> UNIT CONFLICT at   0.00 sec ----> 142 [binary,141.1,3.1] $F.
% 1.71/1.93  
% 1.71/1.93  Length of proof is 12.  Level of proof is 7.
% 1.71/1.93  
% 1.71/1.93  ---------------- PROOF ----------------
% 1.71/1.93  % SZS status Unsatisfiable
% 1.71/1.93  % SZS output start Refutation
% See solution above
% 1.71/1.93  ------------ end of proof -------------
% 1.71/1.93  
% 1.71/1.93  
% 1.71/1.93  Search stopped by max_proofs option.
% 1.71/1.93  
% 1.71/1.93  
% 1.71/1.93  Search stopped by max_proofs option.
% 1.71/1.93  
% 1.71/1.93  ============ end of search ============
% 1.71/1.93  
% 1.71/1.93  -------------- statistics -------------
% 1.71/1.93  clauses given                 28
% 1.71/1.93  clauses generated            243
% 1.71/1.93  clauses kept                  71
% 1.71/1.93  clauses forward subsumed     200
% 1.71/1.93  clauses back subsumed          0
% 1.71/1.93  Kbytes malloced             1953
% 1.71/1.93  
% 1.71/1.93  ----------- times (seconds) -----------
% 1.71/1.93  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.71/1.93  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.71/1.93  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.71/1.93  
% 1.71/1.93  That finishes the proof of the theorem.
% 1.71/1.93  
% 1.71/1.93  Process 25524 finished Wed Jul 27 05:27:37 2022
% 1.71/1.93  Otter interrupted
% 1.71/1.93  PROOF FOUND
%------------------------------------------------------------------------------