TSTP Solution File: GRP702-11 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP702-11 : TPTP v8.1.0. Released v8.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:57:58 EDT 2022

% Result   : Unsatisfiable 3.32s 3.46s
% Output   : Proof 3.32s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP702-11 : TPTP v8.1.0. Released v8.1.0.
% 0.07/0.12  % Command  : moca.sh %s
% 0.12/0.33  % Computer : n012.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Tue Jun 14 05:26:10 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 3.32/3.46  % SZS status Unsatisfiable
% 3.32/3.46  % SZS output start Proof
% 3.32/3.46  The input problem is unsatisfiable because
% 3.32/3.46  
% 3.32/3.46  [1] the following set of Horn clauses is unsatisfiable:
% 3.32/3.46  
% 3.32/3.46  	mult(A, ld(A, B)) = B
% 3.32/3.46  	ld(A, mult(A, B)) = B
% 3.32/3.46  	mult(rd(A, B), B) = A
% 3.32/3.46  	rd(mult(A, B), B) = A
% 3.32/3.46  	mult(A, unit) = A
% 3.32/3.46  	mult(unit, A) = A
% 3.32/3.46  	mult(A, mult(B, mult(B, C))) = mult(mult(mult(A, B), B), C)
% 3.32/3.46  	mult(op_c, mult(A, B)) = mult(mult(op_c, A), B)
% 3.32/3.46  	mult(A, mult(B, op_c)) = mult(mult(A, B), op_c)
% 3.32/3.46  	mult(A, mult(op_c, B)) = mult(mult(A, op_c), B)
% 3.32/3.46  	op_d = ld(A, mult(op_c, A))
% 3.32/3.46  	op_e = mult(mult(rd(op_c, mult(A, B)), B), A)
% 3.32/3.46  	op_f = mult(A, mult(B, ld(mult(A, B), op_c)))
% 3.32/3.46  	mult(x0, mult(x1, op_d)) = mult(mult(x0, x1), op_d) ==> \bottom
% 3.32/3.46  
% 3.32/3.46  This holds because
% 3.32/3.46  
% 3.32/3.46  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 3.32/3.46  
% 3.32/3.46  E:
% 3.32/3.46  	f1(mult(mult(x0, x1), op_d)) = false__
% 3.32/3.46  	f1(mult(x0, mult(x1, op_d))) = true__
% 3.32/3.46  	ld(A, mult(A, B)) = B
% 3.32/3.46  	mult(A, ld(A, B)) = B
% 3.32/3.46  	mult(A, mult(B, mult(B, C))) = mult(mult(mult(A, B), B), C)
% 3.32/3.46  	mult(A, mult(B, op_c)) = mult(mult(A, B), op_c)
% 3.32/3.46  	mult(A, mult(op_c, B)) = mult(mult(A, op_c), B)
% 3.32/3.46  	mult(A, unit) = A
% 3.32/3.46  	mult(op_c, mult(A, B)) = mult(mult(op_c, A), B)
% 3.32/3.46  	mult(rd(A, B), B) = A
% 3.32/3.46  	mult(unit, A) = A
% 3.32/3.46  	op_d = ld(A, mult(op_c, A))
% 3.32/3.46  	op_e = mult(mult(rd(op_c, mult(A, B)), B), A)
% 3.32/3.46  	op_f = mult(A, mult(B, ld(mult(A, B), op_c)))
% 3.32/3.46  	rd(mult(A, B), B) = A
% 3.32/3.46  G:
% 3.32/3.46  	true__ = false__
% 3.32/3.46  
% 3.32/3.46  This holds because
% 3.32/3.46  
% 3.32/3.46  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 3.32/3.46  
% 3.32/3.46  	mult(Y0, op_f) = mult(op_f, Y0)
% 3.32/3.46  	mult(op_f, mult(Y0, Y1)) = mult(Y0, mult(Y1, op_f))
% 3.32/3.46  	f1(mult(mult(x0, x1), op_d)) -> false__
% 3.32/3.46  	f1(mult(op_f, mult(x0, x1))) -> false__
% 3.32/3.46  	f1(mult(x0, mult(op_f, x1))) -> false__
% 3.32/3.46  	f1(mult(x0, mult(op_f, x1))) -> true__
% 3.32/3.46  	f1(mult(x0, mult(x1, op_c))) -> false__
% 3.32/3.46  	f1(mult(x0, mult(x1, op_c))) -> true__
% 3.32/3.46  	f1(mult(x0, mult(x1, op_d))) -> true__
% 3.32/3.46  	ld(A, mult(A, B)) -> B
% 3.32/3.46  	ld(Y0, Y0) -> unit
% 3.32/3.46  	ld(Y0, mult(op_f, Y0)) -> op_f
% 3.32/3.46  	ld(ld(op_f, Y0), Y0) -> op_f
% 3.32/3.46  	ld(op_f, mult(Y1, op_f)) -> Y1
% 3.32/3.46  	ld(rd(X0, Y1), X0) -> Y1
% 3.32/3.46  	ld(unit, Y1) -> Y1
% 3.32/3.46  	mult(A, ld(A, B)) -> B
% 3.32/3.46  	mult(A, mult(B, ld(mult(A, B), op_c))) -> op_f
% 3.32/3.46  	mult(A, unit) -> A
% 3.32/3.46  	mult(mult(A, B), op_c) -> mult(A, mult(B, op_f))
% 3.32/3.46  	mult(mult(A, op_c), B) -> mult(A, mult(op_f, B))
% 3.32/3.46  	mult(mult(Y0, Y1), Y1) -> mult(Y0, mult(Y1, Y1))
% 3.32/3.46  	mult(mult(Y0, op_f), Y1) -> mult(Y0, mult(op_f, Y1))
% 3.32/3.46  	mult(mult(mult(A, B), B), C) -> mult(A, mult(B, mult(B, C)))
% 3.32/3.46  	mult(mult(op_c, A), B) -> mult(op_f, mult(A, B))
% 3.32/3.46  	mult(mult(op_f, Y0), Y1) -> mult(op_f, mult(Y0, Y1))
% 3.32/3.46  	mult(mult(rd(op_c, mult(A, B)), B), A) -> op_f
% 3.32/3.46  	mult(op_f, rd(Y0, op_f)) -> Y0
% 3.32/3.46  	mult(rd(A, B), B) -> A
% 3.32/3.46  	mult(unit, A) -> A
% 3.32/3.46  	op_c -> op_f
% 3.32/3.46  	op_d -> op_f
% 3.32/3.46  	op_e -> op_f
% 3.32/3.46  	rd(X0, op_f) -> ld(op_f, X0)
% 3.32/3.46  	rd(X1, ld(Y0, X1)) -> Y0
% 3.32/3.46  	rd(Y0, unit) -> Y0
% 3.32/3.46  	rd(Y1, Y1) -> unit
% 3.32/3.46  	rd(mult(A, B), B) -> A
% 3.32/3.46  	rd(mult(Y0, op_f), Y0) -> op_f
% 3.32/3.46  	rd(mult(Y1, op_e), Y1) -> op_f
% 3.32/3.46  	rd(mult(op_e, Y0), op_e) -> Y0
% 3.32/3.46  	rd(mult(op_f, Y0), op_f) -> Y0
% 3.32/3.46  	true__ -> false__
% 3.32/3.46  with the LPO induced by
% 3.32/3.46  	x1 > x0 > f1 > mult > op_d > op_e > op_c > op_f > rd > ld > unit > true__ > false__
% 3.32/3.46  
% 3.32/3.46  % SZS output end Proof
% 3.32/3.46  
%------------------------------------------------------------------------------