TSTP Solution File: GRP683-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP683-10 : TPTP v8.1.0. Released v8.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:39 EDT 2022

% Result   : Unsatisfiable 1.93s 2.19s
% Output   : Refutation 1.93s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   16
%            Number of leaves      :    8
% Syntax   : Number of clauses     :   49 (  49 unt;   0 nHn;   3 RR)
%            Number of literals    :   49 (  48 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :  101 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    mult(x3,ld(x4,mult(x4,x5))) != mult(x3,x5),
    file('GRP683-10.p',unknown),
    [] ).

cnf(4,axiom,
    ld(A,mult(A,A)) = A,
    file('GRP683-10.p',unknown),
    [] ).

cnf(5,axiom,
    rd(mult(A,A),A) = A,
    file('GRP683-10.p',unknown),
    [] ).

cnf(8,axiom,
    mult(A,ld(A,B)) = ld(A,mult(A,B)),
    file('GRP683-10.p',unknown),
    [] ).

cnf(9,axiom,
    mult(rd(A,B),B) = rd(mult(A,B),B),
    file('GRP683-10.p',unknown),
    [] ).

cnf(11,plain,
    rd(mult(A,B),B) = mult(rd(A,B),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9])]),
    [iquote('copy,9,flip.1')] ).

cnf(12,axiom,
    ld(ld(A,B),mult(ld(A,B),mult(C,D))) = mult(ld(A,mult(A,C)),D),
    file('GRP683-10.p',unknown),
    [] ).

cnf(13,axiom,
    rd(mult(mult(A,B),rd(C,D)),rd(C,D)) = mult(A,rd(mult(B,D),D)),
    file('GRP683-10.p',unknown),
    [] ).

cnf(14,plain,
    mult(rd(mult(A,B),rd(C,D)),rd(C,D)) = mult(A,mult(rd(B,D),D)),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13]),11,11]),
    [iquote('copy,13,demod,11,11')] ).

cnf(16,axiom,
    ld(A,mult(A,ld(B,B))) = rd(mult(rd(A,A),B),B),
    file('GRP683-10.p',unknown),
    [] ).

cnf(18,plain,
    mult(rd(rd(A,A),B),B) = ld(A,mult(A,ld(B,B))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[16]),11])]),
    [iquote('copy,16,demod,11,flip.1')] ).

cnf(19,plain,
    mult(rd(A,A),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[5]),11]),
    [iquote('back_demod,5,demod,11')] ).

cnf(21,plain,
    mult(ld(A,mult(A,B)),C) = ld(ld(A,D),mult(ld(A,D),mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[12])]),
    [iquote('copy,12,flip.1')] ).

cnf(25,plain,
    rd(A,A) = ld(A,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,19]),18,8,4]),
    [iquote('para_into,10.1.1.1,19.1.1,demod,18,8,4')] ).

cnf(26,plain,
    rd(ld(A,mult(A,B)),ld(A,B)) = mult(rd(A,ld(A,B)),ld(A,B)),
    inference(para_into,[status(thm),theory(equality)],[11,8]),
    [iquote('para_into,10.1.1.1,7.1.1')] ).

cnf(29,plain,
    mult(ld(A,A),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[19]),25]),
    [iquote('back_demod,19,demod,25')] ).

cnf(30,plain,
    mult(rd(ld(A,A),B),B) = ld(A,mult(A,ld(B,B))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),25]),
    [iquote('back_demod,17,demod,25')] ).

cnf(34,plain,
    mult(ld(A,mult(A,B)),C) = ld(A,mult(A,mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,4]),4])]),
    [iquote('para_into,12.1.1.1,3.1.1,demod,4,flip.1')] ).

cnf(40,plain,
    ld(ld(A,B),mult(ld(A,B),mult(C,D))) = ld(A,mult(A,mult(C,D))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[21]),34])]),
    [iquote('back_demod,21,demod,34,flip.1')] ).

cnf(46,plain,
    ld(A,mult(A,ld(ld(A,A),ld(A,A)))) = ld(A,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[30,25]),29])]),
    [iquote('para_into,30.1.1.1,24.1.1,demod,29,flip.1')] ).

cnf(53,plain,
    mult(rd(A,rd(B,C)),rd(B,C)) = mult(ld(A,A),mult(rd(A,C),C)),
    inference(para_into,[status(thm),theory(equality)],[14,29]),
    [iquote('para_into,14.1.1.1.1,28.1.1')] ).

cnf(61,plain,
    mult(mult(ld(A,A),mult(rd(A,B),B)),rd(C,B)) = mult(A,mult(rd(rd(C,B),B),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,11]),53]),
    [iquote('para_into,14.1.1.1,10.1.1,demod,53')] ).

cnf(80,plain,
    ld(A,mult(A,mult(A,B))) = mult(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,4])]),
    [iquote('para_into,33.1.1.1,3.1.1,flip.1')] ).

cnf(102,plain,
    mult(A,ld(ld(A,A),ld(A,A))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[46,8]),8,4,80])]),
    [iquote('para_from,46.1.1,7.1.1.2,demod,8,4,80,flip.1')] ).

cnf(111,plain,
    mult(rd(A,ld(A,A)),ld(A,A)) = rd(A,ld(A,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[26,4])]),
    [iquote('para_into,26.1.1.1,3.1.1,flip.1')] ).

cnf(129,plain,
    rd(ld(A,A),ld(ld(A,A),ld(A,A))) = ld(A,mult(A,ld(ld(ld(A,A),ld(A,A)),ld(ld(A,A),ld(A,A))))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[111,30])]),
    [iquote('para_into,111.1.1,30.1.1,flip.1')] ).

cnf(144,plain,
    ld(ld(A,B),mult(ld(A,B),C)) = ld(A,mult(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[40,102]),102]),
    [iquote('para_into,40.1.1.2.2,101.1.1,demod,102')] ).

cnf(165,plain,
    ld(ld(A,mult(A,B)),ld(A,mult(A,mult(B,C)))) = ld(A,mult(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[144,144]),144,34,144]),
    [iquote('para_into,143.1.1.1,143.1.1,demod,144,34,144')] ).

cnf(172,plain,
    ld(A,mult(A,ld(ld(ld(A,B),ld(A,B)),ld(ld(A,B),ld(A,B))))) = ld(ld(A,B),ld(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[144,102])]),
    [iquote('para_into,143.1.1.2,101.1.1,flip.1')] ).

cnf(175,plain,
    ld(A,ld(A,mult(A,B))) = ld(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[144,4]),8])]),
    [iquote('para_into,143.1.1,3.1.1,demod,8,flip.1')] ).

cnf(180,plain,
    rd(ld(A,A),ld(ld(A,A),ld(A,A))) = ld(ld(A,A),ld(A,A)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[129]),172]),
    [iquote('back_demod,129,demod,172')] ).

cnf(202,plain,
    ld(ld(A,B),ld(A,mult(A,C))) = ld(ld(A,B),C),
    inference(para_into,[status(thm),theory(equality)],[175,144]),
    [iquote('para_into,175.1.1.2,143.1.1')] ).

cnf(203,plain,
    ld(ld(A,mult(A,B)),mult(B,C)) = ld(A,mult(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[165]),202]),
    [iquote('back_demod,165,demod,202')] ).

cnf(210,plain,
    ld(A,mult(A,B)) = ld(ld(A,mult(A,C)),mult(C,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[203])]),
    [iquote('copy,203,flip.1')] ).

cnf(252,plain,
    mult(rd(A,ld(B,B)),ld(B,B)) = mult(ld(A,A),mult(rd(A,B),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[53,25]),25]),
    [iquote('para_into,52.1.1.1.2,24.1.1,demod,25')] ).

cnf(265,plain,
    rd(A,ld(A,A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[111]),252,25,29,29])]),
    [iquote('back_demod,111,demod,252,25,29,29,flip.1')] ).

cnf(269,plain,
    ld(ld(A,A),ld(A,A)) = ld(A,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[180]),265])]),
    [iquote('back_demod,180,demod,265,flip.1')] ).

cnf(284,plain,
    mult(ld(A,A),mult(ld(A,A),mult(rd(A,B),B))) = mult(rd(A,B),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[265,53]),265,252])]),
    [iquote('para_from,264.1.1,52.1.1.2,demod,265,252,flip.1')] ).

cnf(315,plain,
    mult(mult(rd(A,B),B),B) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[61,265]),252,284,265,265,8,4]),
    [iquote('para_into,61.1.1.2,264.1.1,demod,252,284,265,265,8,4')] ).

cnf(347,plain,
    mult(ld(A,A),B) = ld(A,mult(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[315,30]),34,29])]),
    [iquote('para_into,315.1.1.1,30.1.1,demod,34,29,flip.1')] ).

cnf(367,plain,
    ld(A,mult(A,B)) = ld(ld(A,A),B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[347,269]),347,347,202]),
    [iquote('para_into,346.1.1.1,269.1.1,demod,347,347,202')] ).

cnf(385,plain,
    ld(ld(ld(A,A),B),mult(B,C)) = ld(ld(A,A),C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[210]),367,367])]),
    [iquote('back_demod,210,demod,367,367,flip.1')] ).

cnf(403,plain,
    ld(ld(A,A),mult(A,B)) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[80]),367]),
    [iquote('back_demod,79,demod,367')] ).

cnf(408,plain,
    mult(A,ld(A,B)) = ld(ld(A,A),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[8]),367]),
    [iquote('back_demod,7,demod,367')] ).

cnf(410,plain,
    mult(x3,ld(ld(x4,x4),x5)) != mult(x3,x5),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),367]),
    [iquote('back_demod,1,demod,367')] ).

cnf(418,plain,
    mult(A,ld(ld(A,A),B)) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[408,367]),403]),
    [iquote('para_into,408.1.1.2,366.1.1,demod,403')] ).

cnf(457,plain,
    ld(ld(A,A),ld(ld(B,B),C)) = ld(ld(A,A),C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[385,418]),385])]),
    [iquote('para_into,384.1.1.2,417.1.1,demod,385,flip.1')] ).

cnf(527,plain,
    mult(A,ld(ld(B,B),C)) = mult(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[457,418]),418])]),
    [iquote('para_from,457.1.1,417.1.1.2,demod,418,flip.1')] ).

cnf(529,plain,
    $false,
    inference(binary,[status(thm)],[527,410]),
    [iquote('binary,527.1,410.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP683-10 : TPTP v8.1.0. Released v8.1.0.
% 0.12/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n011.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:05:40 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.93/2.19  ----- Otter 3.3f, August 2004 -----
% 1.93/2.19  The process was started by sandbox2 on n011.cluster.edu,
% 1.93/2.19  Wed Jul 27 05:05:40 2022
% 1.93/2.19  The command was "./otter".  The process ID is 30769.
% 1.93/2.19  
% 1.93/2.19  set(prolog_style_variables).
% 1.93/2.19  set(auto).
% 1.93/2.19     dependent: set(auto1).
% 1.93/2.19     dependent: set(process_input).
% 1.93/2.19     dependent: clear(print_kept).
% 1.93/2.19     dependent: clear(print_new_demod).
% 1.93/2.19     dependent: clear(print_back_demod).
% 1.93/2.19     dependent: clear(print_back_sub).
% 1.93/2.19     dependent: set(control_memory).
% 1.93/2.19     dependent: assign(max_mem, 12000).
% 1.93/2.19     dependent: assign(pick_given_ratio, 4).
% 1.93/2.19     dependent: assign(stats_level, 1).
% 1.93/2.19     dependent: assign(max_seconds, 10800).
% 1.93/2.19  clear(print_given).
% 1.93/2.19  
% 1.93/2.19  list(usable).
% 1.93/2.19  0 [] A=A.
% 1.93/2.19  0 [] ld(A,mult(A,A))=A.
% 1.93/2.19  0 [] rd(mult(A,A),A)=A.
% 1.93/2.19  0 [] mult(A,ld(A,B))=ld(A,mult(A,B)).
% 1.93/2.19  0 [] mult(rd(A,B),B)=rd(mult(A,B),B).
% 1.93/2.19  0 [] ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D).
% 1.93/2.19  0 [] rd(mult(mult(A,B),rd(C,D)),rd(C,D))=mult(A,rd(mult(B,D),D)).
% 1.93/2.19  0 [] ld(A,mult(A,ld(B,B)))=rd(mult(rd(A,A),B),B).
% 1.93/2.19  0 [] mult(x3,ld(x4,mult(x4,x5)))!=mult(x3,x5).
% 1.93/2.19  end_of_list.
% 1.93/2.19  
% 1.93/2.19  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.93/2.19  
% 1.93/2.19  All clauses are units, and equality is present; the
% 1.93/2.19  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.93/2.19  
% 1.93/2.19     dependent: set(knuth_bendix).
% 1.93/2.19     dependent: set(anl_eq).
% 1.93/2.19     dependent: set(para_from).
% 1.93/2.19     dependent: set(para_into).
% 1.93/2.19     dependent: clear(para_from_right).
% 1.93/2.19     dependent: clear(para_into_right).
% 1.93/2.19     dependent: set(para_from_vars).
% 1.93/2.19     dependent: set(eq_units_both_ways).
% 1.93/2.19     dependent: set(dynamic_demod_all).
% 1.93/2.19     dependent: set(dynamic_demod).
% 1.93/2.19     dependent: set(order_eq).
% 1.93/2.19     dependent: set(back_demod).
% 1.93/2.19     dependent: set(lrpo).
% 1.93/2.19  
% 1.93/2.19  ------------> process usable:
% 1.93/2.19  ** KEPT (pick-wt=11): 1 [] mult(x3,ld(x4,mult(x4,x5)))!=mult(x3,x5).
% 1.93/2.19  
% 1.93/2.19  ------------> process sos:
% 1.93/2.19  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.93/2.19  ** KEPT (pick-wt=7): 3 [] ld(A,mult(A,A))=A.
% 1.93/2.19  ---> New Demodulator: 4 [new_demod,3] ld(A,mult(A,A))=A.
% 1.93/2.19  ** KEPT (pick-wt=7): 5 [] rd(mult(A,A),A)=A.
% 1.93/2.19  ---> New Demodulator: 6 [new_demod,5] rd(mult(A,A),A)=A.
% 1.93/2.19  ** KEPT (pick-wt=11): 7 [] mult(A,ld(A,B))=ld(A,mult(A,B)).
% 1.93/2.19  ---> New Demodulator: 8 [new_demod,7] mult(A,ld(A,B))=ld(A,mult(A,B)).
% 1.93/2.19  ** KEPT (pick-wt=11): 10 [copy,9,flip.1] rd(mult(A,B),B)=mult(rd(A,B),B).
% 1.93/2.19  ---> New Demodulator: 11 [new_demod,10] rd(mult(A,B),B)=mult(rd(A,B),B).
% 1.93/2.19  ** KEPT (pick-wt=19): 12 [] ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D).
% 1.93/2.19  ** KEPT (pick-wt=19): 14 [copy,13,demod,11,11] mult(rd(mult(A,B),rd(C,D)),rd(C,D))=mult(A,mult(rd(B,D),D)).
% 1.93/2.19  ---> New Demodulator: 15 [new_demod,14] mult(rd(mult(A,B),rd(C,D)),rd(C,D))=mult(A,mult(rd(B,D),D)).
% 1.93/2.19  ** KEPT (pick-wt=15): 17 [copy,16,demod,11,flip.1] mult(rd(rd(A,A),B),B)=ld(A,mult(A,ld(B,B))).
% 1.93/2.19  ---> New Demodulator: 18 [new_demod,17] mult(rd(rd(A,A),B),B)=ld(A,mult(A,ld(B,B))).
% 1.93/2.19    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.93/2.19  >>>> Starting back demodulation with 4.
% 1.93/2.19  >>>> Starting back demodulation with 6.
% 1.93/2.19  >>>> Starting back demodulation with 8.
% 1.93/2.19  >>>> Starting back demodulation with 11.
% 1.93/2.19      >> back demodulating 5 with 11.
% 1.93/2.19  ** KEPT (pick-wt=19): 21 [copy,12,flip.1] mult(ld(A,mult(A,B)),C)=ld(ld(A,D),mult(ld(A,D),mult(B,C))).
% 1.93/2.19  >>>> Starting back demodulation with 15.
% 1.93/2.19  >>>> Starting back demodulation with 18.
% 1.93/2.19  >>>> Starting back demodulation with 20.
% 1.93/2.19    Following clause subsumed by 12 during input processing: 0 [copy,21,flip.1] ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D).
% 1.93/2.19  
% 1.93/2.19  ======= end of input processing =======
% 1.93/2.19  
% 1.93/2.19  =========== start of search ===========
% 1.93/2.19  
% 1.93/2.19  
% 1.93/2.19  Resetting weight limit to 15.
% 1.93/2.19  
% 1.93/2.19  
% 1.93/2.19  Resetting weight limit to 15.
% 1.93/2.19  
% 1.93/2.19  sos_size=88
% 1.93/2.19  
% 1.93/2.19  -------- PROOF -------- 
% 1.93/2.19  
% 1.93/2.19  ----> UNIT CONFLICT at   0.05 sec ----> 529 [binary,527.1,410.1] $F.
% 1.93/2.19  
% 1.93/2.19  Length of proof is 40.  Level of proof is 15.
% 1.93/2.19  
% 1.93/2.19  ---------------- PROOF ----------------
% 1.93/2.19  % SZS status Unsatisfiable
% 1.93/2.19  % SZS output start Refutation
% See solution above
% 1.93/2.19  ------------ end of proof -------------
% 1.93/2.19  
% 1.93/2.19  
% 1.93/2.19  Search stopped by max_proofs option.
% 1.93/2.19  
% 1.93/2.19  
% 1.93/2.19  Search stopped by max_proofs option.
% 1.93/2.19  
% 1.93/2.19  ============ end of search ============
% 1.93/2.19  
% 1.93/2.19  -------------- statistics -------------
% 1.93/2.19  clauses given                 91
% 1.93/2.19  clauses generated           2449
% 1.93/2.19  clauses kept                 281
% 1.93/2.19  clauses forward subsumed    1404
% 1.93/2.19  clauses back subsumed          2
% 1.93/2.19  Kbytes malloced             4882
% 1.93/2.19  
% 1.93/2.19  ----------- times (seconds) -----------
% 1.93/2.19  user CPU time          0.05          (0 hr, 0 min, 0 sec)
% 1.93/2.19  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.93/2.19  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.93/2.19  
% 1.93/2.19  That finishes the proof of the theorem.
% 1.93/2.19  
% 1.93/2.19  Process 30769 finished Wed Jul 27 05:05:42 2022
% 1.93/2.19  Otter interrupted
% 1.93/2.19  PROOF FOUND
%------------------------------------------------------------------------------