TSTP Solution File: GRP682+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP682+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:38 EDT 2022

% Result   : Theorem 1.75s 1.98s
% Output   : Refutation 1.75s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    9
% Syntax   : Number of clauses     :   36 (  34 unt;   0 nHn;   4 RR)
%            Number of literals    :   38 (  37 equ;   5 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   70 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ld(ld(dollar_c3,dollar_c2),mult(ld(dollar_c3,dollar_c2),dollar_c1)) != ld(dollar_c3,mult(dollar_c3,dollar_c1))
    | ld(rd(dollar_c3,dollar_c2),mult(rd(dollar_c3,dollar_c2),dollar_c1)) != ld(dollar_c3,mult(dollar_c3,dollar_c1)) ),
    file('GRP682+1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP682+1.p',unknown),
    [] ).

cnf(4,axiom,
    ld(A,mult(A,A)) = A,
    file('GRP682+1.p',unknown),
    [] ).

cnf(5,axiom,
    rd(mult(A,A),A) = A,
    file('GRP682+1.p',unknown),
    [] ).

cnf(8,axiom,
    mult(A,ld(A,B)) = ld(A,mult(A,B)),
    file('GRP682+1.p',unknown),
    [] ).

cnf(9,axiom,
    mult(rd(A,B),B) = rd(mult(A,B),B),
    file('GRP682+1.p',unknown),
    [] ).

cnf(11,plain,
    rd(mult(A,B),B) = mult(rd(A,B),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9])]),
    [iquote('copy,9,flip.1')] ).

cnf(12,axiom,
    ld(ld(A,B),mult(ld(A,B),mult(C,D))) = mult(ld(A,mult(A,C)),D),
    file('GRP682+1.p',unknown),
    [] ).

cnf(13,axiom,
    rd(mult(mult(A,B),rd(C,D)),rd(C,D)) = mult(A,rd(mult(B,D),D)),
    file('GRP682+1.p',unknown),
    [] ).

cnf(14,plain,
    mult(rd(mult(A,B),rd(C,D)),rd(C,D)) = mult(A,mult(rd(B,D),D)),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13]),11,11]),
    [iquote('copy,13,demod,11,11')] ).

cnf(16,axiom,
    ld(A,mult(A,ld(B,B))) = rd(mult(rd(A,A),B),B),
    file('GRP682+1.p',unknown),
    [] ).

cnf(18,plain,
    mult(rd(rd(A,A),B),B) = ld(A,mult(A,ld(B,B))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[16]),11])]),
    [iquote('copy,16,demod,11,flip.1')] ).

cnf(19,plain,
    mult(rd(A,A),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[5]),11]),
    [iquote('back_demod,5,demod,11')] ).

cnf(21,plain,
    mult(ld(A,mult(A,B)),C) = ld(ld(A,D),mult(ld(A,D),mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[12])]),
    [iquote('copy,12,flip.1')] ).

cnf(25,plain,
    rd(A,A) = ld(A,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,19]),18,8,4]),
    [iquote('para_into,10.1.1.1,19.1.1,demod,18,8,4')] ).

cnf(26,plain,
    rd(ld(A,mult(A,B)),ld(A,B)) = mult(rd(A,ld(A,B)),ld(A,B)),
    inference(para_into,[status(thm),theory(equality)],[11,8]),
    [iquote('para_into,10.1.1.1,7.1.1')] ).

cnf(29,plain,
    mult(ld(A,A),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[19]),25]),
    [iquote('back_demod,19,demod,25')] ).

cnf(30,plain,
    mult(rd(ld(A,A),B),B) = ld(A,mult(A,ld(B,B))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),25]),
    [iquote('back_demod,17,demod,25')] ).

cnf(34,plain,
    mult(ld(A,mult(A,B)),C) = ld(A,mult(A,mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,4]),4])]),
    [iquote('para_into,12.1.1.1,3.1.1,demod,4,flip.1')] ).

cnf(40,plain,
    ld(ld(A,B),mult(ld(A,B),mult(C,D))) = ld(A,mult(A,mult(C,D))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[21]),34])]),
    [iquote('back_demod,21,demod,34,flip.1')] ).

cnf(46,plain,
    ld(A,mult(A,ld(ld(A,A),ld(A,A)))) = ld(A,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[30,25]),29])]),
    [iquote('para_into,30.1.1.1,24.1.1,demod,29,flip.1')] ).

cnf(53,plain,
    mult(rd(A,rd(B,C)),rd(B,C)) = mult(ld(A,A),mult(rd(A,C),C)),
    inference(para_into,[status(thm),theory(equality)],[14,29]),
    [iquote('para_into,14.1.1.1.1,28.1.1')] ).

cnf(61,plain,
    mult(mult(ld(A,A),mult(rd(A,B),B)),rd(C,B)) = mult(A,mult(rd(rd(C,B),B),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,11]),53]),
    [iquote('para_into,14.1.1.1,10.1.1,demod,53')] ).

cnf(80,plain,
    ld(A,mult(A,mult(A,B))) = mult(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,4])]),
    [iquote('para_into,33.1.1.1,3.1.1,flip.1')] ).

cnf(102,plain,
    mult(A,ld(ld(A,A),ld(A,A))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[46,8]),8,4,80])]),
    [iquote('para_from,46.1.1,7.1.1.2,demod,8,4,80,flip.1')] ).

cnf(111,plain,
    mult(rd(A,ld(A,A)),ld(A,A)) = rd(A,ld(A,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[26,4])]),
    [iquote('para_into,26.1.1.1,3.1.1,flip.1')] ).

cnf(144,plain,
    ld(ld(A,B),mult(ld(A,B),C)) = ld(A,mult(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[40,102]),102]),
    [iquote('para_into,40.1.1.2.2,101.1.1,demod,102')] ).

cnf(151,plain,
    ( ld(dollar_c3,mult(dollar_c3,dollar_c1)) != ld(dollar_c3,mult(dollar_c3,dollar_c1))
    | ld(rd(dollar_c3,dollar_c2),mult(rd(dollar_c3,dollar_c2),dollar_c1)) != ld(dollar_c3,mult(dollar_c3,dollar_c1)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),144]),
    [iquote('back_demod,1,demod,144')] ).

cnf(171,plain,
    ld(mult(A,B),mult(mult(A,B),C)) = ld(A,mult(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[144,80]),80]),
    [iquote('para_into,143.1.1.1,79.1.1,demod,80')] ).

cnf(253,plain,
    mult(rd(A,ld(B,B)),ld(B,B)) = mult(ld(A,A),mult(rd(A,B),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[53,25]),25]),
    [iquote('para_into,52.1.1.1.2,24.1.1,demod,25')] ).

cnf(266,plain,
    rd(A,ld(A,A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[111]),253,25,29,29])]),
    [iquote('back_demod,111,demod,253,25,29,29,flip.1')] ).

cnf(285,plain,
    mult(ld(A,A),mult(ld(A,A),mult(rd(A,B),B))) = mult(rd(A,B),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[266,53]),266,253])]),
    [iquote('para_from,265.1.1,52.1.1.2,demod,266,253,flip.1')] ).

cnf(317,plain,
    mult(mult(rd(A,B),B),B) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[61,266]),253,285,266,266,8,4]),
    [iquote('para_into,61.1.1.2,265.1.1,demod,253,285,266,266,8,4')] ).

cnf(366,plain,
    ld(rd(A,B),mult(rd(A,B),C)) = ld(A,mult(A,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[317,171]),317,171,171])]),
    [iquote('para_from,316.1.1,170.1.1.1,demod,317,171,171,flip.1')] ).

cnf(367,plain,
    ld(dollar_c3,mult(dollar_c3,dollar_c1)) != ld(dollar_c3,mult(dollar_c3,dollar_c1)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[151]),366]),
    [iquote('back_demod,151,demod,366')] ).

cnf(368,plain,
    $false,
    inference(binary,[status(thm)],[367,2]),
    [iquote('binary,367.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP682+1 : TPTP v8.1.0. Released v4.0.0.
% 0.12/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n029.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:31:29 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.75/1.96  ----- Otter 3.3f, August 2004 -----
% 1.75/1.96  The process was started by sandbox on n029.cluster.edu,
% 1.75/1.96  Wed Jul 27 05:31:29 2022
% 1.75/1.96  The command was "./otter".  The process ID is 25149.
% 1.75/1.96  
% 1.75/1.96  set(prolog_style_variables).
% 1.75/1.96  set(auto).
% 1.75/1.96     dependent: set(auto1).
% 1.75/1.96     dependent: set(process_input).
% 1.75/1.96     dependent: clear(print_kept).
% 1.75/1.96     dependent: clear(print_new_demod).
% 1.75/1.96     dependent: clear(print_back_demod).
% 1.75/1.96     dependent: clear(print_back_sub).
% 1.75/1.96     dependent: set(control_memory).
% 1.75/1.96     dependent: assign(max_mem, 12000).
% 1.75/1.96     dependent: assign(pick_given_ratio, 4).
% 1.75/1.96     dependent: assign(stats_level, 1).
% 1.75/1.96     dependent: assign(max_seconds, 10800).
% 1.75/1.96  clear(print_given).
% 1.75/1.96  
% 1.75/1.96  formula_list(usable).
% 1.75/1.96  all A (A=A).
% 1.75/1.96  all A (ld(A,mult(A,A))=A).
% 1.75/1.96  all A (rd(mult(A,A),A)=A).
% 1.75/1.96  all B A (mult(A,ld(A,B))=ld(A,mult(A,B))).
% 1.75/1.96  all B A (mult(rd(A,B),B)=rd(mult(A,B),B)).
% 1.75/1.96  all D C B A (ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D)).
% 1.75/1.96  all D C B A (rd(mult(mult(A,B),rd(C,D)),rd(C,D))=mult(A,rd(mult(B,D),D))).
% 1.75/1.96  all B A (ld(A,mult(A,ld(B,B)))=rd(mult(rd(A,A),B),B)).
% 1.75/1.96  -(all X0 X1 X2 (ld(ld(X0,X1),mult(ld(X0,X1),X2))=ld(X0,mult(X0,X2))&ld(rd(X0,X1),mult(rd(X0,X1),X2))=ld(X0,mult(X0,X2)))).
% 1.75/1.96  end_of_list.
% 1.75/1.96  
% 1.75/1.96  -------> usable clausifies to:
% 1.75/1.96  
% 1.75/1.96  list(usable).
% 1.75/1.96  0 [] A=A.
% 1.75/1.96  0 [] ld(A,mult(A,A))=A.
% 1.75/1.96  0 [] rd(mult(A,A),A)=A.
% 1.75/1.96  0 [] mult(A,ld(A,B))=ld(A,mult(A,B)).
% 1.75/1.96  0 [] mult(rd(A,B),B)=rd(mult(A,B),B).
% 1.75/1.96  0 [] ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D).
% 1.75/1.96  0 [] rd(mult(mult(A,B),rd(C,D)),rd(C,D))=mult(A,rd(mult(B,D),D)).
% 1.75/1.96  0 [] ld(A,mult(A,ld(B,B)))=rd(mult(rd(A,A),B),B).
% 1.75/1.96  0 [] ld(ld($c3,$c2),mult(ld($c3,$c2),$c1))!=ld($c3,mult($c3,$c1))|ld(rd($c3,$c2),mult(rd($c3,$c2),$c1))!=ld($c3,mult($c3,$c1)).
% 1.75/1.96  end_of_list.
% 1.75/1.96  
% 1.75/1.96  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.75/1.96  
% 1.75/1.96  This is a Horn set with equality.  The strategy will be
% 1.75/1.96  Knuth-Bendix and hyper_res, with positive clauses in
% 1.75/1.96  sos and nonpositive clauses in usable.
% 1.75/1.96  
% 1.75/1.96     dependent: set(knuth_bendix).
% 1.75/1.96     dependent: set(anl_eq).
% 1.75/1.96     dependent: set(para_from).
% 1.75/1.96     dependent: set(para_into).
% 1.75/1.96     dependent: clear(para_from_right).
% 1.75/1.96     dependent: clear(para_into_right).
% 1.75/1.96     dependent: set(para_from_vars).
% 1.75/1.96     dependent: set(eq_units_both_ways).
% 1.75/1.96     dependent: set(dynamic_demod_all).
% 1.75/1.96     dependent: set(dynamic_demod).
% 1.75/1.96     dependent: set(order_eq).
% 1.75/1.96     dependent: set(back_demod).
% 1.75/1.96     dependent: set(lrpo).
% 1.75/1.96     dependent: set(hyper_res).
% 1.75/1.96     dependent: clear(order_hyper).
% 1.75/1.96  
% 1.75/1.96  ------------> process usable:
% 1.75/1.96  ** KEPT (pick-wt=30): 1 [] ld(ld($c3,$c2),mult(ld($c3,$c2),$c1))!=ld($c3,mult($c3,$c1))|ld(rd($c3,$c2),mult(rd($c3,$c2),$c1))!=ld($c3,mult($c3,$c1)).
% 1.75/1.96  
% 1.75/1.96  ------------> process sos:
% 1.75/1.96  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.75/1.96  ** KEPT (pick-wt=7): 3 [] ld(A,mult(A,A))=A.
% 1.75/1.96  ---> New Demodulator: 4 [new_demod,3] ld(A,mult(A,A))=A.
% 1.75/1.96  ** KEPT (pick-wt=7): 5 [] rd(mult(A,A),A)=A.
% 1.75/1.96  ---> New Demodulator: 6 [new_demod,5] rd(mult(A,A),A)=A.
% 1.75/1.96  ** KEPT (pick-wt=11): 7 [] mult(A,ld(A,B))=ld(A,mult(A,B)).
% 1.75/1.96  ---> New Demodulator: 8 [new_demod,7] mult(A,ld(A,B))=ld(A,mult(A,B)).
% 1.75/1.96  ** KEPT (pick-wt=11): 10 [copy,9,flip.1] rd(mult(A,B),B)=mult(rd(A,B),B).
% 1.75/1.96  ---> New Demodulator: 11 [new_demod,10] rd(mult(A,B),B)=mult(rd(A,B),B).
% 1.75/1.96  ** KEPT (pick-wt=19): 12 [] ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D).
% 1.75/1.96  ** KEPT (pick-wt=19): 14 [copy,13,demod,11,11] mult(rd(mult(A,B),rd(C,D)),rd(C,D))=mult(A,mult(rd(B,D),D)).
% 1.75/1.96  ---> New Demodulator: 15 [new_demod,14] mult(rd(mult(A,B),rd(C,D)),rd(C,D))=mult(A,mult(rd(B,D),D)).
% 1.75/1.96  ** KEPT (pick-wt=15): 17 [copy,16,demod,11,flip.1] mult(rd(rd(A,A),B),B)=ld(A,mult(A,ld(B,B))).
% 1.75/1.96  ---> New Demodulator: 18 [new_demod,17] mult(rd(rd(A,A),B),B)=ld(A,mult(A,ld(B,B))).
% 1.75/1.96    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.75/1.96  >>>> Starting back demodulation with 4.
% 1.75/1.96  >>>> Starting back demodulation with 6.
% 1.75/1.96  >>>> Starting back demodulation with 8.
% 1.75/1.96  >>>> Starting back demodulation with 11.
% 1.75/1.96      >> back demodulating 5 with 11.
% 1.75/1.96  ** KEPT (pick-wt=19): 21 [copy,12,flip.1] mult(ld(A,mult(A,B)),C)=ld(ld(A,D),mult(ld(A,D),mult(B,C))).
% 1.75/1.96  >>>> Starting back demodulation with 15.
% 1.75/1.96  >>>> Starting back demodulation with 18.
% 1.75/1.96  >>>> Starting back demodulation with 20.
% 1.75/1.96    Following clause subsumed by 12 during input processing: 0 [copy,21,flip.1] ld(ld(A,B),mult(ld(A,B),mult(C,D)))=mult(ld(A,mult(A,C)),D).
% 1.75/1.98  
% 1.75/1.98  ======= end of input processing =======
% 1.75/1.98  
% 1.75/1.98  =========== start of search ===========
% 1.75/1.98  
% 1.75/1.98  
% 1.75/1.98  Resetting weight limit to 15.
% 1.75/1.98  
% 1.75/1.98  
% 1.75/1.98  Resetting weight limit to 15.
% 1.75/1.98  
% 1.75/1.98  sos_size=89
% 1.75/1.98  
% 1.75/1.98  -------- PROOF -------- 
% 1.75/1.98  
% 1.75/1.98  ----> UNIT CONFLICT at   0.02 sec ----> 368 [binary,367.1,2.1] $F.
% 1.75/1.98  
% 1.75/1.98  Length of proof is 26.  Level of proof is 11.
% 1.75/1.98  
% 1.75/1.98  ---------------- PROOF ----------------
% 1.75/1.98  % SZS status Theorem
% 1.75/1.98  % SZS output start Refutation
% See solution above
% 1.75/1.98  ------------ end of proof -------------
% 1.75/1.98  
% 1.75/1.98  
% 1.75/1.98  Search stopped by max_proofs option.
% 1.75/1.98  
% 1.75/1.98  
% 1.75/1.98  Search stopped by max_proofs option.
% 1.75/1.98  
% 1.75/1.98  ============ end of search ============
% 1.75/1.98  
% 1.75/1.98  -------------- statistics -------------
% 1.75/1.98  clauses given                 32
% 1.75/1.98  clauses generated            386
% 1.75/1.98  clauses kept                 201
% 1.75/1.98  clauses forward subsumed     311
% 1.75/1.98  clauses back subsumed          2
% 1.75/1.98  Kbytes malloced             4882
% 1.75/1.98  
% 1.75/1.98  ----------- times (seconds) -----------
% 1.75/1.98  user CPU time          0.02          (0 hr, 0 min, 0 sec)
% 1.75/1.98  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.75/1.98  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.75/1.98  
% 1.75/1.98  That finishes the proof of the theorem.
% 1.75/1.98  
% 1.75/1.98  Process 25149 finished Wed Jul 27 05:31:31 2022
% 1.75/1.98  Otter interrupted
% 1.75/1.98  PROOF FOUND
%------------------------------------------------------------------------------