TSTP Solution File: GRP657+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP657+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:34 EDT 2022

% Result   : Theorem 2.01s 2.20s
% Output   : Refutation 2.01s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   17 (  16 unt;   0 nHn;   3 RR)
%            Number of literals    :   18 (  17 equ;   3 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    4 (   4 usr;   0 con; 1-2 aty)
%            Number of variables   :   36 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( mult(dollar_f1(A),A) != dollar_f1(A)
    | mult(A,dollar_f1(A)) != dollar_f1(A) ),
    file('GRP657+1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP657+1.p',unknown),
    [] ).

cnf(6,axiom,
    ld(A,mult(A,B)) = B,
    file('GRP657+1.p',unknown),
    [] ).

cnf(8,axiom,
    mult(rd(A,B),B) = A,
    file('GRP657+1.p',unknown),
    [] ).

cnf(9,axiom,
    rd(mult(A,B),B) = A,
    file('GRP657+1.p',unknown),
    [] ).

cnf(11,axiom,
    mult(mult(A,B),mult(C,A)) = mult(A,mult(mult(B,C),A)),
    file('GRP657+1.p',unknown),
    [] ).

cnf(23,plain,
    mult(mult(A,B),C) = mult(A,mult(mult(B,rd(C,A)),A)),
    inference(para_into,[status(thm),theory(equality)],[11,8]),
    [iquote('para_into,11.1.1.2,7.1.1')] ).

cnf(27,plain,
    mult(A,mult(mult(B,rd(C,A)),A)) = mult(mult(A,B),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[23])]),
    [iquote('copy,23,flip.1')] ).

cnf(29,plain,
    rd(mult(A,mult(mult(B,C),A)),mult(C,A)) = mult(A,B),
    inference(para_from,[status(thm),theory(equality)],[11,9]),
    [iquote('para_from,11.1.1,9.1.1.1')] ).

cnf(162,plain,
    ld(A,mult(mult(A,B),C)) = mult(mult(B,rd(C,A)),A),
    inference(para_from,[status(thm),theory(equality)],[27,6]),
    [iquote('para_from,27.1.1,5.1.1.2')] ).

cnf(179,plain,
    rd(mult(A,mult(B,A)),mult(C,A)) = mult(A,rd(B,C)),
    inference(para_into,[status(thm),theory(equality)],[29,8]),
    [iquote('para_into,29.1.1.1.2.1,7.1.1')] ).

cnf(378,plain,
    mult(A,rd(B,B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[179,9])]),
    [iquote('para_into,179.1.1,9.1.1,flip.1')] ).

cnf(389,plain,
    rd(A,rd(B,B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[378,8])]),
    [iquote('para_into,378.1.1,7.1.1,flip.1')] ).

cnf(399,plain,
    mult(mult(rd(A,A),B),C) = mult(rd(A,A),mult(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[378,27]),389])]),
    [iquote('para_from,378.1.1,27.1.1.2,demod,389,flip.1')] ).

cnf(427,plain,
    mult(rd(A,A),B) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[378,162]),6,399,8])]),
    [iquote('para_from,378.1.1,162.1.1.2.1,demod,6,399,8,flip.1')] ).

cnf(429,plain,
    dollar_f1(rd(A,A)) != dollar_f1(rd(A,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[378,1]),427]),
    [iquote('para_from,378.1.1,1.1.1,demod,427')] ).

cnf(430,plain,
    $false,
    inference(binary,[status(thm)],[429,2]),
    [iquote('binary,429.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP657+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n026.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:23:39 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 2.01/2.20  ----- Otter 3.3f, August 2004 -----
% 2.01/2.20  The process was started by sandbox on n026.cluster.edu,
% 2.01/2.20  Wed Jul 27 05:23:39 2022
% 2.01/2.20  The command was "./otter".  The process ID is 28972.
% 2.01/2.20  
% 2.01/2.20  set(prolog_style_variables).
% 2.01/2.20  set(auto).
% 2.01/2.20     dependent: set(auto1).
% 2.01/2.20     dependent: set(process_input).
% 2.01/2.20     dependent: clear(print_kept).
% 2.01/2.20     dependent: clear(print_new_demod).
% 2.01/2.20     dependent: clear(print_back_demod).
% 2.01/2.20     dependent: clear(print_back_sub).
% 2.01/2.20     dependent: set(control_memory).
% 2.01/2.20     dependent: assign(max_mem, 12000).
% 2.01/2.20     dependent: assign(pick_given_ratio, 4).
% 2.01/2.20     dependent: assign(stats_level, 1).
% 2.01/2.20     dependent: assign(max_seconds, 10800).
% 2.01/2.20  clear(print_given).
% 2.01/2.20  
% 2.01/2.20  formula_list(usable).
% 2.01/2.20  all A (A=A).
% 2.01/2.20  all B A (mult(A,ld(A,B))=B).
% 2.01/2.20  all B A (ld(A,mult(A,B))=B).
% 2.01/2.20  all B A (mult(rd(A,B),B)=A).
% 2.01/2.20  all B A (rd(mult(A,B),B)=A).
% 2.01/2.20  all C B A (mult(mult(A,B),mult(C,A))=mult(A,mult(mult(B,C),A))).
% 2.01/2.20  -(exists X0 all X1 (mult(X1,X0)=X1&mult(X0,X1)=X1)).
% 2.01/2.20  end_of_list.
% 2.01/2.20  
% 2.01/2.20  -------> usable clausifies to:
% 2.01/2.20  
% 2.01/2.20  list(usable).
% 2.01/2.20  0 [] A=A.
% 2.01/2.20  0 [] mult(A,ld(A,B))=B.
% 2.01/2.20  0 [] ld(A,mult(A,B))=B.
% 2.01/2.20  0 [] mult(rd(A,B),B)=A.
% 2.01/2.20  0 [] rd(mult(A,B),B)=A.
% 2.01/2.20  0 [] mult(mult(A,B),mult(C,A))=mult(A,mult(mult(B,C),A)).
% 2.01/2.20  0 [] mult($f1(X0),X0)!=$f1(X0)|mult(X0,$f1(X0))!=$f1(X0).
% 2.01/2.20  end_of_list.
% 2.01/2.20  
% 2.01/2.20  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 2.01/2.20  
% 2.01/2.20  This is a Horn set with equality.  The strategy will be
% 2.01/2.20  Knuth-Bendix and hyper_res, with positive clauses in
% 2.01/2.20  sos and nonpositive clauses in usable.
% 2.01/2.20  
% 2.01/2.20     dependent: set(knuth_bendix).
% 2.01/2.20     dependent: set(anl_eq).
% 2.01/2.20     dependent: set(para_from).
% 2.01/2.20     dependent: set(para_into).
% 2.01/2.20     dependent: clear(para_from_right).
% 2.01/2.20     dependent: clear(para_into_right).
% 2.01/2.20     dependent: set(para_from_vars).
% 2.01/2.20     dependent: set(eq_units_both_ways).
% 2.01/2.20     dependent: set(dynamic_demod_all).
% 2.01/2.20     dependent: set(dynamic_demod).
% 2.01/2.20     dependent: set(order_eq).
% 2.01/2.20     dependent: set(back_demod).
% 2.01/2.20     dependent: set(lrpo).
% 2.01/2.20     dependent: set(hyper_res).
% 2.01/2.20     dependent: clear(order_hyper).
% 2.01/2.20  
% 2.01/2.20  ------------> process usable:
% 2.01/2.20  ** KEPT (pick-wt=14): 1 [] mult($f1(A),A)!=$f1(A)|mult(A,$f1(A))!=$f1(A).
% 2.01/2.20  
% 2.01/2.20  ------------> process sos:
% 2.01/2.20  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.01/2.20  ** KEPT (pick-wt=7): 3 [] mult(A,ld(A,B))=B.
% 2.01/2.20  ---> New Demodulator: 4 [new_demod,3] mult(A,ld(A,B))=B.
% 2.01/2.20  ** KEPT (pick-wt=7): 5 [] ld(A,mult(A,B))=B.
% 2.01/2.20  ---> New Demodulator: 6 [new_demod,5] ld(A,mult(A,B))=B.
% 2.01/2.20  ** KEPT (pick-wt=7): 7 [] mult(rd(A,B),B)=A.
% 2.01/2.20  ---> New Demodulator: 8 [new_demod,7] mult(rd(A,B),B)=A.
% 2.01/2.20  ** KEPT (pick-wt=7): 9 [] rd(mult(A,B),B)=A.
% 2.01/2.20  ---> New Demodulator: 10 [new_demod,9] rd(mult(A,B),B)=A.
% 2.01/2.20  ** KEPT (pick-wt=15): 11 [] mult(mult(A,B),mult(C,A))=mult(A,mult(mult(B,C),A)).
% 2.01/2.20    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.01/2.20  >>>> Starting back demodulation with 4.
% 2.01/2.20  >>>> Starting back demodulation with 6.
% 2.01/2.20  >>>> Starting back demodulation with 8.
% 2.01/2.20  >>>> Starting back demodulation with 10.
% 2.01/2.20  ** KEPT (pick-wt=15): 12 [copy,11,flip.1] mult(A,mult(mult(B,C),A))=mult(mult(A,B),mult(C,A)).
% 2.01/2.20    Following clause subsumed by 11 during input processing: 0 [copy,12,flip.1] mult(mult(A,B),mult(C,A))=mult(A,mult(mult(B,C),A)).
% 2.01/2.20  
% 2.01/2.20  ======= end of input processing =======
% 2.01/2.20  
% 2.01/2.20  =========== start of search ===========
% 2.01/2.20  
% 2.01/2.20  
% 2.01/2.20  Resetting weight limit to 15.
% 2.01/2.20  
% 2.01/2.20  
% 2.01/2.20  Resetting weight limit to 15.
% 2.01/2.20  
% 2.01/2.20  sos_size=213
% 2.01/2.20  
% 2.01/2.20  -------- PROOF -------- 
% 2.01/2.20  
% 2.01/2.20  ----> UNIT CONFLICT at   0.04 sec ----> 430 [binary,429.1,2.1] $F.
% 2.01/2.20  
% 2.01/2.20  Length of proof is 10.  Level of proof is 7.
% 2.01/2.20  
% 2.01/2.20  ---------------- PROOF ----------------
% 2.01/2.20  % SZS status Theorem
% 2.01/2.20  % SZS output start Refutation
% See solution above
% 2.01/2.20  ------------ end of proof -------------
% 2.01/2.20  
% 2.01/2.20  
% 2.01/2.20  Search stopped by max_proofs option.
% 2.01/2.20  
% 2.01/2.20  
% 2.01/2.20  Search stopped by max_proofs option.
% 2.01/2.20  
% 2.01/2.20  ============ end of search ============
% 2.01/2.20  
% 2.01/2.20  -------------- statistics -------------
% 2.01/2.20  clauses given                 34
% 2.01/2.20  clauses generated           1246
% 2.01/2.20  clauses kept                 293
% 2.01/2.20  clauses forward subsumed     455
% 2.01/2.20  clauses back subsumed          0
% 2.01/2.20  Kbytes malloced             4882
% 2.01/2.20  
% 2.01/2.20  ----------- times (seconds) -----------
% 2.01/2.20  user CPU time          0.04          (0 hr, 0 min, 0 sec)
% 2.01/2.20  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.01/2.20  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.01/2.20  
% 2.01/2.20  That finishes the proof of the theorem.
% 2.01/2.20  
% 2.01/2.20  Process 28972 finished Wed Jul 27 05:23:41 2022
% 2.01/2.20  Otter interrupted
% 2.01/2.20  PROOF FOUND
%------------------------------------------------------------------------------