TSTP Solution File: GRP628+1 by E-SAT---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E-SAT---3.1
% Problem  : GRP628+1 : TPTP v8.1.2. Released v3.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 17:49:41 EDT 2023

% Result   : Theorem 0.13s 0.44s
% Output   : CNFRefutation 0.13s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    7
% Syntax   : Number of formulae    :   55 (  14 unt;   0 def)
%            Number of atoms       :  330 (  31 equ)
%            Maximal formula atoms :   30 (   6 avg)
%            Number of connectives :  432 ( 157   ~; 159   |;  76   &)
%                                         (   0 <=>;  40  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   6 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   11 (   9 usr;   1 prp; 0-4 aty)
%            Number of functors    :   10 (  10 usr;   3 con; 0-2 aty)
%            Number of variables   :   72 (   0 sgn;  48   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t57_group_2,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m1_subset_1(X2,u1_struct_0(X1))
         => ! [X3] :
              ( m1_group_2(X3,X1)
             => ! [X4] :
                  ( m1_subset_1(X4,u1_struct_0(X3))
                 => ( X4 = X2
                   => k3_group_1(X3,X4) = k3_group_1(X1,X2) ) ) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',t57_group_2) ).

fof(t51_group_2,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m1_group_2(X2,X1)
         => ! [X3] :
              ( m1_subset_1(X3,u1_struct_0(X2))
             => m1_subset_1(X3,u1_struct_0(X1)) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',t51_group_2) ).

fof(t22_autgroup,conjecture,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k4_autgroup(X1))
         => ! [X3] :
              ( m1_subset_1(X3,u1_struct_0(k5_autgroup(X1)))
             => ( X2 = X3
               => k2_funct_1(X2) = k3_group_1(k5_autgroup(X1),X3) ) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',t22_autgroup) ).

fof(dt_k5_autgroup,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ( v1_group_1(k5_autgroup(X1))
        & v1_group_3(k5_autgroup(X1),k3_autgroup(X1))
        & m1_group_2(k5_autgroup(X1),k3_autgroup(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',dt_k5_autgroup) ).

fof(t11_autgroup,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1))
         => ! [X3] :
              ( m1_subset_1(X3,u1_struct_0(k3_autgroup(X1)))
             => ( X2 = X3
               => k2_funct_1(X2) = k3_group_1(k3_autgroup(X1),X3) ) ) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',t11_autgroup) ).

fof(t13_autgroup,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k4_autgroup(X1))
         => m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',t13_autgroup) ).

fof(dt_k3_autgroup,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ( ~ v3_struct_0(k3_autgroup(X1))
        & v1_group_1(k3_autgroup(X1))
        & v3_group_1(k3_autgroup(X1))
        & v4_group_1(k3_autgroup(X1))
        & l1_group_1(k3_autgroup(X1)) ) ),
    file('/export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p',dt_k3_autgroup) ).

fof(c_0_7,plain,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m1_subset_1(X2,u1_struct_0(X1))
         => ! [X3] :
              ( m1_group_2(X3,X1)
             => ! [X4] :
                  ( m1_subset_1(X4,u1_struct_0(X3))
                 => ( X4 = X2
                   => k3_group_1(X3,X4) = k3_group_1(X1,X2) ) ) ) ) ),
    inference(fof_simplification,[status(thm)],[t57_group_2]) ).

fof(c_0_8,plain,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m1_group_2(X2,X1)
         => ! [X3] :
              ( m1_subset_1(X3,u1_struct_0(X2))
             => m1_subset_1(X3,u1_struct_0(X1)) ) ) ),
    inference(fof_simplification,[status(thm)],[t51_group_2]) ).

fof(c_0_9,negated_conjecture,
    ~ ! [X1] :
        ( ( ~ v3_struct_0(X1)
          & v1_group_1(X1)
          & v3_group_1(X1)
          & v4_group_1(X1)
          & l1_group_1(X1) )
       => ! [X2] :
            ( m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k4_autgroup(X1))
           => ! [X3] :
                ( m1_subset_1(X3,u1_struct_0(k5_autgroup(X1)))
               => ( X2 = X3
                 => k2_funct_1(X2) = k3_group_1(k5_autgroup(X1),X3) ) ) ) ),
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[t22_autgroup])]) ).

fof(c_0_10,plain,
    ! [X13,X14,X15,X16] :
      ( v3_struct_0(X13)
      | ~ v3_group_1(X13)
      | ~ v4_group_1(X13)
      | ~ l1_group_1(X13)
      | ~ m1_subset_1(X14,u1_struct_0(X13))
      | ~ m1_group_2(X15,X13)
      | ~ m1_subset_1(X16,u1_struct_0(X15))
      | X16 != X14
      | k3_group_1(X15,X16) = k3_group_1(X13,X14) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_7])])]) ).

fof(c_0_11,plain,
    ! [X40,X41,X42] :
      ( v3_struct_0(X40)
      | ~ v3_group_1(X40)
      | ~ l1_group_1(X40)
      | ~ m1_group_2(X41,X40)
      | ~ m1_subset_1(X42,u1_struct_0(X41))
      | m1_subset_1(X42,u1_struct_0(X40)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_8])])]) ).

fof(c_0_12,negated_conjecture,
    ( ~ v3_struct_0(esk1_0)
    & v1_group_1(esk1_0)
    & v3_group_1(esk1_0)
    & v4_group_1(esk1_0)
    & l1_group_1(esk1_0)
    & m2_fraenkel(esk2_0,u1_struct_0(esk1_0),u1_struct_0(esk1_0),k4_autgroup(esk1_0))
    & m1_subset_1(esk3_0,u1_struct_0(k5_autgroup(esk1_0)))
    & esk2_0 = esk3_0
    & k2_funct_1(esk2_0) != k3_group_1(k5_autgroup(esk1_0),esk3_0) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_9])])]) ).

cnf(c_0_13,plain,
    ( v3_struct_0(X1)
    | k3_group_1(X3,X4) = k3_group_1(X1,X2)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1)
    | ~ m1_subset_1(X2,u1_struct_0(X1))
    | ~ m1_group_2(X3,X1)
    | ~ m1_subset_1(X4,u1_struct_0(X3))
    | X4 != X2 ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_14,plain,
    ( v3_struct_0(X1)
    | m1_subset_1(X3,u1_struct_0(X1))
    | ~ v3_group_1(X1)
    | ~ l1_group_1(X1)
    | ~ m1_group_2(X2,X1)
    | ~ m1_subset_1(X3,u1_struct_0(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_11]) ).

cnf(c_0_15,negated_conjecture,
    m1_subset_1(esk3_0,u1_struct_0(k5_autgroup(esk1_0))),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_16,negated_conjecture,
    esk2_0 = esk3_0,
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

fof(c_0_17,plain,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ( v1_group_1(k5_autgroup(X1))
        & v1_group_3(k5_autgroup(X1),k3_autgroup(X1))
        & m1_group_2(k5_autgroup(X1),k3_autgroup(X1)) ) ),
    inference(fof_simplification,[status(thm)],[dt_k5_autgroup]) ).

fof(c_0_18,plain,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1))
         => ! [X3] :
              ( m1_subset_1(X3,u1_struct_0(k3_autgroup(X1)))
             => ( X2 = X3
               => k2_funct_1(X2) = k3_group_1(k3_autgroup(X1),X3) ) ) ) ),
    inference(fof_simplification,[status(thm)],[t11_autgroup]) ).

fof(c_0_19,plain,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k4_autgroup(X1))
         => m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1)) ) ),
    inference(fof_simplification,[status(thm)],[t13_autgroup]) ).

cnf(c_0_20,plain,
    ( k3_group_1(X1,X2) = k3_group_1(X3,X2)
    | v3_struct_0(X1)
    | ~ m1_group_2(X3,X1)
    | ~ m1_subset_1(X2,u1_struct_0(X3))
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(csr,[status(thm)],[inference(er,[status(thm)],[c_0_13]),c_0_14]) ).

cnf(c_0_21,negated_conjecture,
    m1_subset_1(esk2_0,u1_struct_0(k5_autgroup(esk1_0))),
    inference(rw,[status(thm)],[c_0_15,c_0_16]) ).

fof(c_0_22,plain,
    ! [X17] :
      ( ( v1_group_1(k5_autgroup(X17))
        | v3_struct_0(X17)
        | ~ v1_group_1(X17)
        | ~ v3_group_1(X17)
        | ~ v4_group_1(X17)
        | ~ l1_group_1(X17) )
      & ( v1_group_3(k5_autgroup(X17),k3_autgroup(X17))
        | v3_struct_0(X17)
        | ~ v1_group_1(X17)
        | ~ v3_group_1(X17)
        | ~ v4_group_1(X17)
        | ~ l1_group_1(X17) )
      & ( m1_group_2(k5_autgroup(X17),k3_autgroup(X17))
        | v3_struct_0(X17)
        | ~ v1_group_1(X17)
        | ~ v3_group_1(X17)
        | ~ v4_group_1(X17)
        | ~ l1_group_1(X17) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])]) ).

fof(c_0_23,plain,
    ! [X10,X11,X12] :
      ( v3_struct_0(X10)
      | ~ v1_group_1(X10)
      | ~ v3_group_1(X10)
      | ~ v4_group_1(X10)
      | ~ l1_group_1(X10)
      | ~ m2_fraenkel(X11,u1_struct_0(X10),u1_struct_0(X10),k1_autgroup(X10))
      | ~ m1_subset_1(X12,u1_struct_0(k3_autgroup(X10)))
      | X11 != X12
      | k2_funct_1(X11) = k3_group_1(k3_autgroup(X10),X12) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])]) ).

fof(c_0_24,plain,
    ! [X49,X50] :
      ( v3_struct_0(X49)
      | ~ v1_group_1(X49)
      | ~ v3_group_1(X49)
      | ~ v4_group_1(X49)
      | ~ l1_group_1(X49)
      | ~ m2_fraenkel(X50,u1_struct_0(X49),u1_struct_0(X49),k4_autgroup(X49))
      | m2_fraenkel(X50,u1_struct_0(X49),u1_struct_0(X49),k1_autgroup(X49)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])]) ).

cnf(c_0_25,negated_conjecture,
    k2_funct_1(esk2_0) != k3_group_1(k5_autgroup(esk1_0),esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_26,negated_conjecture,
    ( k3_group_1(X1,esk2_0) = k3_group_1(k5_autgroup(esk1_0),esk2_0)
    | v3_struct_0(X1)
    | ~ m1_group_2(k5_autgroup(esk1_0),X1)
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(spm,[status(thm)],[c_0_20,c_0_21]) ).

cnf(c_0_27,plain,
    ( m1_group_2(k5_autgroup(X1),k3_autgroup(X1))
    | v3_struct_0(X1)
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_28,negated_conjecture,
    l1_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_29,negated_conjecture,
    v4_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_30,negated_conjecture,
    v3_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_31,negated_conjecture,
    v1_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_32,negated_conjecture,
    ~ v3_struct_0(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_33,plain,
    ( v3_struct_0(X1)
    | k2_funct_1(X2) = k3_group_1(k3_autgroup(X1),X3)
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1)
    | ~ m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1))
    | ~ m1_subset_1(X3,u1_struct_0(k3_autgroup(X1)))
    | X2 != X3 ),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

cnf(c_0_34,plain,
    ( v3_struct_0(X1)
    | m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1))
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1)
    | ~ m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k4_autgroup(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_35,negated_conjecture,
    m2_fraenkel(esk2_0,u1_struct_0(esk1_0),u1_struct_0(esk1_0),k4_autgroup(esk1_0)),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_36,negated_conjecture,
    k3_group_1(k5_autgroup(esk1_0),esk2_0) != k2_funct_1(esk2_0),
    inference(rw,[status(thm)],[c_0_25,c_0_16]) ).

cnf(c_0_37,negated_conjecture,
    ( k3_group_1(k5_autgroup(esk1_0),esk2_0) = k3_group_1(k3_autgroup(esk1_0),esk2_0)
    | v3_struct_0(k3_autgroup(esk1_0))
    | ~ l1_group_1(k3_autgroup(esk1_0))
    | ~ v4_group_1(k3_autgroup(esk1_0))
    | ~ v3_group_1(k3_autgroup(esk1_0)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_27]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

cnf(c_0_38,plain,
    ( k3_group_1(k3_autgroup(X1),X2) = k2_funct_1(X2)
    | v3_struct_0(X1)
    | ~ m1_subset_1(X2,u1_struct_0(k3_autgroup(X1)))
    | ~ m2_fraenkel(X2,u1_struct_0(X1),u1_struct_0(X1),k1_autgroup(X1))
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v1_group_1(X1) ),
    inference(er,[status(thm)],[c_0_33]) ).

cnf(c_0_39,negated_conjecture,
    m2_fraenkel(esk2_0,u1_struct_0(esk1_0),u1_struct_0(esk1_0),k1_autgroup(esk1_0)),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_35]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

cnf(c_0_40,negated_conjecture,
    ( m1_subset_1(esk2_0,u1_struct_0(X1))
    | v3_struct_0(X1)
    | ~ m1_group_2(k5_autgroup(esk1_0),X1)
    | ~ l1_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(spm,[status(thm)],[c_0_14,c_0_21]) ).

fof(c_0_41,plain,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v1_group_1(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ( ~ v3_struct_0(k3_autgroup(X1))
        & v1_group_1(k3_autgroup(X1))
        & v3_group_1(k3_autgroup(X1))
        & v4_group_1(k3_autgroup(X1))
        & l1_group_1(k3_autgroup(X1)) ) ),
    inference(fof_simplification,[status(thm)],[dt_k3_autgroup]) ).

cnf(c_0_42,negated_conjecture,
    ( v3_struct_0(k3_autgroup(esk1_0))
    | k3_group_1(k3_autgroup(esk1_0),esk2_0) != k2_funct_1(esk2_0)
    | ~ l1_group_1(k3_autgroup(esk1_0))
    | ~ v4_group_1(k3_autgroup(esk1_0))
    | ~ v3_group_1(k3_autgroup(esk1_0)) ),
    inference(spm,[status(thm)],[c_0_36,c_0_37]) ).

cnf(c_0_43,negated_conjecture,
    ( k3_group_1(k3_autgroup(esk1_0),esk2_0) = k2_funct_1(esk2_0)
    | ~ m1_subset_1(esk2_0,u1_struct_0(k3_autgroup(esk1_0))) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38,c_0_39]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

cnf(c_0_44,negated_conjecture,
    ( m1_subset_1(esk2_0,u1_struct_0(k3_autgroup(esk1_0)))
    | v3_struct_0(k3_autgroup(esk1_0))
    | ~ l1_group_1(k3_autgroup(esk1_0))
    | ~ v3_group_1(k3_autgroup(esk1_0)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_27]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

fof(c_0_45,plain,
    ! [X68] :
      ( ( ~ v3_struct_0(k3_autgroup(X68))
        | v3_struct_0(X68)
        | ~ v1_group_1(X68)
        | ~ v3_group_1(X68)
        | ~ v4_group_1(X68)
        | ~ l1_group_1(X68) )
      & ( v1_group_1(k3_autgroup(X68))
        | v3_struct_0(X68)
        | ~ v1_group_1(X68)
        | ~ v3_group_1(X68)
        | ~ v4_group_1(X68)
        | ~ l1_group_1(X68) )
      & ( v3_group_1(k3_autgroup(X68))
        | v3_struct_0(X68)
        | ~ v1_group_1(X68)
        | ~ v3_group_1(X68)
        | ~ v4_group_1(X68)
        | ~ l1_group_1(X68) )
      & ( v4_group_1(k3_autgroup(X68))
        | v3_struct_0(X68)
        | ~ v1_group_1(X68)
        | ~ v3_group_1(X68)
        | ~ v4_group_1(X68)
        | ~ l1_group_1(X68) )
      & ( l1_group_1(k3_autgroup(X68))
        | v3_struct_0(X68)
        | ~ v1_group_1(X68)
        | ~ v3_group_1(X68)
        | ~ v4_group_1(X68)
        | ~ l1_group_1(X68) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_41])])]) ).

cnf(c_0_46,negated_conjecture,
    ( v3_struct_0(k3_autgroup(esk1_0))
    | ~ l1_group_1(k3_autgroup(esk1_0))
    | ~ v4_group_1(k3_autgroup(esk1_0))
    | ~ v3_group_1(k3_autgroup(esk1_0)) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_42,c_0_43]),c_0_44]) ).

cnf(c_0_47,plain,
    ( v4_group_1(k3_autgroup(X1))
    | v3_struct_0(X1)
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_48,negated_conjecture,
    ( v3_struct_0(k3_autgroup(esk1_0))
    | ~ l1_group_1(k3_autgroup(esk1_0))
    | ~ v3_group_1(k3_autgroup(esk1_0)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_47]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

cnf(c_0_49,plain,
    ( v3_group_1(k3_autgroup(X1))
    | v3_struct_0(X1)
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_50,plain,
    ( v3_struct_0(X1)
    | ~ v3_struct_0(k3_autgroup(X1))
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_51,negated_conjecture,
    ( v3_struct_0(k3_autgroup(esk1_0))
    | ~ l1_group_1(k3_autgroup(esk1_0)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48,c_0_49]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

cnf(c_0_52,negated_conjecture,
    ~ l1_group_1(k3_autgroup(esk1_0)),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]) ).

cnf(c_0_53,plain,
    ( l1_group_1(k3_autgroup(X1))
    | v3_struct_0(X1)
    | ~ v1_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ l1_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_54,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_53]),c_0_28]),c_0_29]),c_0_30]),c_0_31])]),c_0_32]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.09  % Problem    : GRP628+1 : TPTP v8.1.2. Released v3.4.0.
% 0.08/0.09  % Command    : run_E %s %d THM
% 0.09/0.29  % Computer : n023.cluster.edu
% 0.09/0.29  % Model    : x86_64 x86_64
% 0.09/0.29  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.09/0.29  % Memory   : 8042.1875MB
% 0.09/0.29  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.09/0.29  % CPULimit   : 2400
% 0.09/0.29  % WCLimit    : 300
% 0.09/0.29  % DateTime   : Tue Oct  3 02:42:37 EDT 2023
% 0.09/0.29  % CPUTime    : 
% 0.13/0.40  Running first-order model finding
% 0.13/0.40  Running: /export/starexec/sandbox/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --satauto-schedule=8 --cpu-limit=300 /export/starexec/sandbox/tmp/tmp.RFGQtPgV8Q/E---3.1_893.p
% 0.13/0.44  # Version: 3.1pre001
% 0.13/0.44  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.13/0.44  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.13/0.44  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.13/0.44  # Starting new_bool_3 with 300s (1) cores
% 0.13/0.44  # Starting new_bool_1 with 300s (1) cores
% 0.13/0.44  # Starting sh5l with 300s (1) cores
% 0.13/0.44  # sh5l with pid 987 completed with status 0
% 0.13/0.44  # Result found by sh5l
% 0.13/0.44  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.13/0.44  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.13/0.44  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.13/0.44  # Starting new_bool_3 with 300s (1) cores
% 0.13/0.44  # Starting new_bool_1 with 300s (1) cores
% 0.13/0.44  # Starting sh5l with 300s (1) cores
% 0.13/0.44  # SinE strategy is gf500_gu_R04_F100_L20000
% 0.13/0.44  # Search class: FGHSM-FSMM31-SFFFFFNN
% 0.13/0.44  # Scheduled 5 strats onto 1 cores with 300 seconds (300 total)
% 0.13/0.44  # Starting G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with 181s (1) cores
% 0.13/0.44  # G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with pid 990 completed with status 0
% 0.13/0.44  # Result found by G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N
% 0.13/0.44  # Preprocessing class: FSLSSMSSSSSNFFN.
% 0.13/0.44  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.13/0.44  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 0.13/0.44  # Starting new_bool_3 with 300s (1) cores
% 0.13/0.44  # Starting new_bool_1 with 300s (1) cores
% 0.13/0.44  # Starting sh5l with 300s (1) cores
% 0.13/0.44  # SinE strategy is gf500_gu_R04_F100_L20000
% 0.13/0.44  # Search class: FGHSM-FSMM31-SFFFFFNN
% 0.13/0.44  # Scheduled 5 strats onto 1 cores with 300 seconds (300 total)
% 0.13/0.44  # Starting G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with 181s (1) cores
% 0.13/0.44  # Preprocessing time       : 0.002 s
% 0.13/0.44  # Presaturation interreduction done
% 0.13/0.44  
% 0.13/0.44  # Proof found!
% 0.13/0.44  # SZS status Theorem
% 0.13/0.44  # SZS output start CNFRefutation
% See solution above
% 0.13/0.44  # Parsed axioms                        : 77
% 0.13/0.44  # Removed by relevancy pruning/SinE    : 9
% 0.13/0.44  # Initial clauses                      : 143
% 0.13/0.44  # Removed in clause preprocessing      : 8
% 0.13/0.44  # Initial clauses in saturation        : 135
% 0.13/0.44  # Processed clauses                    : 423
% 0.13/0.44  # ...of these trivial                  : 1
% 0.13/0.44  # ...subsumed                          : 55
% 0.13/0.44  # ...remaining for further processing  : 367
% 0.13/0.44  # Other redundant clauses eliminated   : 2
% 0.13/0.44  # Clauses deleted for lack of memory   : 0
% 0.13/0.44  # Backward-subsumed                    : 22
% 0.13/0.44  # Backward-rewritten                   : 7
% 0.13/0.44  # Generated clauses                    : 250
% 0.13/0.44  # ...of the previous two non-redundant : 227
% 0.13/0.44  # ...aggressively subsumed             : 0
% 0.13/0.44  # Contextual simplify-reflections      : 6
% 0.13/0.44  # Paramodulations                      : 248
% 0.13/0.44  # Factorizations                       : 0
% 0.13/0.44  # NegExts                              : 0
% 0.13/0.44  # Equation resolutions                 : 2
% 0.13/0.44  # Total rewrite steps                  : 97
% 0.13/0.44  # Propositional unsat checks           : 0
% 0.13/0.44  #    Propositional check models        : 0
% 0.13/0.44  #    Propositional check unsatisfiable : 0
% 0.13/0.44  #    Propositional clauses             : 0
% 0.13/0.44  #    Propositional clauses after purity: 0
% 0.13/0.44  #    Propositional unsat core size     : 0
% 0.13/0.44  #    Propositional preprocessing time  : 0.000
% 0.13/0.44  #    Propositional encoding time       : 0.000
% 0.13/0.44  #    Propositional solver time         : 0.000
% 0.13/0.44  #    Success case prop preproc time    : 0.000
% 0.13/0.44  #    Success case prop encoding time   : 0.000
% 0.13/0.44  #    Success case prop solver time     : 0.000
% 0.13/0.44  # Current number of processed clauses  : 203
% 0.13/0.44  #    Positive orientable unit clauses  : 52
% 0.13/0.44  #    Positive unorientable unit clauses: 0
% 0.13/0.44  #    Negative unit clauses             : 11
% 0.13/0.44  #    Non-unit-clauses                  : 140
% 0.13/0.44  # Current number of unprocessed clauses: 65
% 0.13/0.44  # ...number of literals in the above   : 375
% 0.13/0.44  # Current number of archived formulas  : 0
% 0.13/0.44  # Current number of archived clauses   : 162
% 0.13/0.44  # Clause-clause subsumption calls (NU) : 10716
% 0.13/0.44  # Rec. Clause-clause subsumption calls : 2229
% 0.13/0.44  # Non-unit clause-clause subsumptions  : 81
% 0.13/0.44  # Unit Clause-clause subsumption calls : 454
% 0.13/0.44  # Rewrite failures with RHS unbound    : 0
% 0.13/0.44  # BW rewrite match attempts            : 4
% 0.13/0.44  # BW rewrite match successes           : 3
% 0.13/0.44  # Condensation attempts                : 0
% 0.13/0.44  # Condensation successes               : 0
% 0.13/0.44  # Termbank termtop insertions          : 13786
% 0.13/0.44  
% 0.13/0.44  # -------------------------------------------------
% 0.13/0.44  # User time                : 0.027 s
% 0.13/0.44  # System time              : 0.004 s
% 0.13/0.44  # Total time               : 0.031 s
% 0.13/0.44  # Maximum resident set size: 2268 pages
% 0.13/0.44  
% 0.13/0.44  # -------------------------------------------------
% 0.13/0.44  # User time                : 0.028 s
% 0.13/0.44  # System time              : 0.008 s
% 0.13/0.44  # Total time               : 0.035 s
% 0.13/0.44  # Maximum resident set size: 1756 pages
% 0.13/0.44  % E---3.1 exiting
%------------------------------------------------------------------------------