TSTP Solution File: GRP610-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP610-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:21 EDT 2022

% Result   : Unsatisfiable 1.69s 1.91s
% Output   : Refutation 1.69s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   33 (  33 unt;   0 nHn;   4 RR)
%            Number of literals    :   33 (  32 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   92 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP610-1.p',unknown),
    [] ).

cnf(3,axiom,
    inverse(double_divide(inverse(double_divide(inverse(double_divide(A,B)),C)),double_divide(A,C))) = B,
    file('GRP610-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP610-1.p',unknown),
    [] ).

cnf(7,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(8,plain,
    multiply(double_divide(A,B),multiply(B,multiply(C,A))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3]),7,7,7]),
    [iquote('back_demod,3,demod,7,7,7')] ).

cnf(10,plain,
    multiply(double_divide(multiply(A,multiply(B,C)),D),multiply(D,B)) = double_divide(C,A),
    inference(para_into,[status(thm),theory(equality)],[8,8]),
    [iquote('para_into,8.1.1.2.2,8.1.1')] ).

cnf(12,plain,
    multiply(double_divide(multiply(A,B),double_divide(B,C)),A) = C,
    inference(para_into,[status(thm),theory(equality)],[8,8]),
    [iquote('para_into,8.1.1.2,8.1.1')] ).

cnf(34,plain,
    double_divide(A,multiply(double_divide(multiply(B,A),C),B)) = C,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,12])]),
    [iquote('para_into,10.1.1,12.1.1,flip.1')] ).

cnf(65,plain,
    multiply(double_divide(multiply(A,multiply(B,C)),D),A) = double_divide(C,multiply(D,B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,34])]),
    [iquote('para_into,34.1.1.2.1,34.1.1,flip.1')] ).

cnf(66,plain,
    double_divide(multiply(A,B),double_divide(B,multiply(C,A))) = C,
    inference(para_into,[status(thm),theory(equality)],[34,10]),
    [iquote('para_into,34.1.1.2,10.1.1')] ).

cnf(76,plain,
    inverse(A) = multiply(multiply(double_divide(multiply(B,C),A),B),C),
    inference(para_from,[status(thm),theory(equality)],[34,7]),
    [iquote('para_from,34.1.1,6.1.1.1')] ).

cnf(78,plain,
    multiply(multiply(double_divide(multiply(A,B),C),A),B) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[76])]),
    [iquote('copy,76,flip.1')] ).

cnf(100,plain,
    inverse(A) = multiply(double_divide(B,multiply(A,C)),multiply(C,B)),
    inference(para_from,[status(thm),theory(equality)],[66,7]),
    [iquote('para_from,66.1.1,6.1.1.1')] ).

cnf(101,plain,
    multiply(double_divide(A,multiply(B,C)),multiply(C,A)) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[100])]),
    [iquote('copy,100,flip.1')] ).

cnf(129,plain,
    multiply(double_divide(A,double_divide(A,multiply(B,C))),inverse(B)) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[78,8]),65]),
    [iquote('para_from,78.1.1,8.1.1.2,demod,65')] ).

cnf(181,plain,
    multiply(multiply(multiply(double_divide(A,multiply(b2,B)),multiply(B,A)),b2),a2) != a2,
    inference(para_from,[status(thm),theory(equality)],[100,1]),
    [iquote('para_from,100.1.1,1.1.1.1.1')] ).

cnf(227,plain,
    multiply(double_divide(A,double_divide(A,multiply(double_divide(B,C),D))),multiply(C,B)) = D,
    inference(para_into,[status(thm),theory(equality)],[129,7]),
    [iquote('para_into,129.1.1.2,6.1.1')] ).

cnf(231,plain,
    multiply(multiply(A,B),multiply(inverse(A),C)) = multiply(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[129,78]),7])]),
    [iquote('para_from,129.1.1,78.1.1.1,demod,7,flip.1')] ).

cnf(233,plain,
    double_divide(multiply(inverse(A),B),multiply(A,C)) = double_divide(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[129,34])]),
    [iquote('para_from,129.1.1,34.1.1.2,flip.1')] ).

cnf(258,plain,
    multiply(multiply(A,multiply(B,C)),D) = multiply(B,multiply(multiply(A,C),D)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[231,8]),7])]),
    [iquote('para_into,231.1.1.1,8.1.1,demod,7,flip.1')] ).

cnf(270,plain,
    multiply(multiply(double_divide(A,multiply(b2,B)),A),multiply(multiply(B,b2),a2)) != a2,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[181]),258,258]),
    [iquote('back_demod,181,demod,258,258')] ).

cnf(356,plain,
    double_divide(multiply(A,multiply(inverse(B),C)),double_divide(C,A)) = B,
    inference(para_from,[status(thm),theory(equality)],[233,66]),
    [iquote('para_from,233.1.1,66.1.1.2')] ).

cnf(358,plain,
    double_divide(A,multiply(double_divide(A,B),inverse(C))) = multiply(C,B),
    inference(para_from,[status(thm),theory(equality)],[233,34]),
    [iquote('para_from,233.1.1,34.1.1.2.1')] ).

cnf(370,plain,
    double_divide(inverse(A),double_divide(B,double_divide(B,multiply(A,inverse(C))))) = C,
    inference(para_into,[status(thm),theory(equality)],[356,101]),
    [iquote('para_into,356.1.1.1,101.1.1')] ).

cnf(402,plain,
    multiply(A,double_divide(B,multiply(A,C))) = double_divide(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[358,129])]),
    [iquote('para_into,358.1.1.2,129.1.1,flip.1')] ).

cnf(431,plain,
    multiply(A,double_divide(B,double_divide(C,D))) = double_divide(B,double_divide(C,multiply(A,D))),
    inference(para_into,[status(thm),theory(equality)],[402,402]),
    [iquote('para_into,402.1.1.2.2,402.1.1')] ).

cnf(442,plain,
    double_divide(A,double_divide(B,double_divide(B,multiply(C,D)))) = double_divide(A,multiply(C,D)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[402,10]),431,65]),
    [iquote('para_into,402.1.1.2.2,10.1.1,demod,431,65')] ).

cnf(474,plain,
    double_divide(inverse(A),multiply(A,inverse(B))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[370]),442]),
    [iquote('back_demod,370,demod,442')] ).

cnf(528,plain,
    double_divide(multiply(inverse(A),inverse(B)),A) = B,
    inference(para_from,[status(thm),theory(equality)],[474,66]),
    [iquote('para_from,474.1.1,66.1.1.2')] ).

cnf(580,plain,
    multiply(A,multiply(B,inverse(A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[528,12]),7]),
    [iquote('para_from,528.1.1,12.1.1.1,demod,7')] ).

cnf(589,plain,
    double_divide(A,double_divide(A,multiply(B,C))) = multiply(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[580,129])]),
    [iquote('para_into,580.1.1.2,129.1.1,flip.1')] ).

cnf(598,plain,
    multiply(multiply(double_divide(A,B),C),multiply(B,A)) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[227]),589]),
    [iquote('back_demod,227,demod,589')] ).

cnf(600,plain,
    $false,
    inference(binary,[status(thm)],[598,270]),
    [iquote('binary,598.1,270.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP610-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n022.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 05:01:05 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.69/1.91  ----- Otter 3.3f, August 2004 -----
% 1.69/1.91  The process was started by sandbox2 on n022.cluster.edu,
% 1.69/1.91  Wed Jul 27 05:01:05 2022
% 1.69/1.91  The command was "./otter".  The process ID is 21496.
% 1.69/1.91  
% 1.69/1.91  set(prolog_style_variables).
% 1.69/1.91  set(auto).
% 1.69/1.91     dependent: set(auto1).
% 1.69/1.91     dependent: set(process_input).
% 1.69/1.91     dependent: clear(print_kept).
% 1.69/1.91     dependent: clear(print_new_demod).
% 1.69/1.91     dependent: clear(print_back_demod).
% 1.69/1.91     dependent: clear(print_back_sub).
% 1.69/1.91     dependent: set(control_memory).
% 1.69/1.91     dependent: assign(max_mem, 12000).
% 1.69/1.91     dependent: assign(pick_given_ratio, 4).
% 1.69/1.91     dependent: assign(stats_level, 1).
% 1.69/1.91     dependent: assign(max_seconds, 10800).
% 1.69/1.91  clear(print_given).
% 1.69/1.91  
% 1.69/1.91  list(usable).
% 1.69/1.91  0 [] A=A.
% 1.69/1.91  0 [] inverse(double_divide(inverse(double_divide(inverse(double_divide(A,B)),C)),double_divide(A,C)))=B.
% 1.69/1.91  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.69/1.91  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.69/1.91  end_of_list.
% 1.69/1.91  
% 1.69/1.91  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.69/1.91  
% 1.69/1.91  All clauses are units, and equality is present; the
% 1.69/1.91  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.69/1.91  
% 1.69/1.91     dependent: set(knuth_bendix).
% 1.69/1.91     dependent: set(anl_eq).
% 1.69/1.91     dependent: set(para_from).
% 1.69/1.91     dependent: set(para_into).
% 1.69/1.91     dependent: clear(para_from_right).
% 1.69/1.91     dependent: clear(para_into_right).
% 1.69/1.91     dependent: set(para_from_vars).
% 1.69/1.91     dependent: set(eq_units_both_ways).
% 1.69/1.91     dependent: set(dynamic_demod_all).
% 1.69/1.91     dependent: set(dynamic_demod).
% 1.69/1.91     dependent: set(order_eq).
% 1.69/1.91     dependent: set(back_demod).
% 1.69/1.91     dependent: set(lrpo).
% 1.69/1.91  
% 1.69/1.91  ------------> process usable:
% 1.69/1.91  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.69/1.91  
% 1.69/1.91  ------------> process sos:
% 1.69/1.91  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.69/1.91  ** KEPT (pick-wt=14): 3 [] inverse(double_divide(inverse(double_divide(inverse(double_divide(A,B)),C)),double_divide(A,C)))=B.
% 1.69/1.91  ---> New Demodulator: 4 [new_demod,3] inverse(double_divide(inverse(double_divide(inverse(double_divide(A,B)),C)),double_divide(A,C)))=B.
% 1.69/1.91  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.69/1.91  ---> New Demodulator: 7 [new_demod,6] inverse(double_divide(A,B))=multiply(B,A).
% 1.69/1.91    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.69/1.91  >>>> Starting back demodulation with 4.
% 1.69/1.91  >>>> Starting back demodulation with 7.
% 1.69/1.91      >> back demodulating 3 with 7.
% 1.69/1.91  >>>> Starting back demodulation with 9.
% 1.69/1.91  
% 1.69/1.91  ======= end of input processing =======
% 1.69/1.91  
% 1.69/1.91  =========== start of search ===========
% 1.69/1.91  
% 1.69/1.91  
% 1.69/1.91  Resetting weight limit to 13.
% 1.69/1.91  
% 1.69/1.91  
% 1.69/1.91  Resetting weight limit to 13.
% 1.69/1.91  
% 1.69/1.91  sos_size=275
% 1.69/1.91  
% 1.69/1.91  -------- PROOF -------- 
% 1.69/1.91  
% 1.69/1.91  ----> UNIT CONFLICT at   0.01 sec ----> 600 [binary,598.1,270.1] $F.
% 1.69/1.91  
% 1.69/1.91  Length of proof is 29.  Level of proof is 17.
% 1.69/1.91  
% 1.69/1.91  ---------------- PROOF ----------------
% 1.69/1.91  % SZS status Unsatisfiable
% 1.69/1.91  % SZS output start Refutation
% See solution above
% 1.69/1.91  ------------ end of proof -------------
% 1.69/1.91  
% 1.69/1.91  
% 1.69/1.91  Search stopped by max_proofs option.
% 1.69/1.91  
% 1.69/1.91  
% 1.69/1.91  Search stopped by max_proofs option.
% 1.69/1.91  
% 1.69/1.91  ============ end of search ============
% 1.69/1.91  
% 1.69/1.91  -------------- statistics -------------
% 1.69/1.91  clauses given                 25
% 1.69/1.91  clauses generated            497
% 1.69/1.91  clauses kept                 407
% 1.69/1.91  clauses forward subsumed     286
% 1.69/1.91  clauses back subsumed          0
% 1.69/1.91  Kbytes malloced             4882
% 1.69/1.91  
% 1.69/1.91  ----------- times (seconds) -----------
% 1.69/1.91  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.69/1.91  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.69/1.91  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.69/1.91  
% 1.69/1.91  That finishes the proof of the theorem.
% 1.69/1.91  
% 1.69/1.91  Process 21496 finished Wed Jul 27 05:01:07 2022
% 1.69/1.91  Otter interrupted
% 1.69/1.91  PROOF FOUND
%------------------------------------------------------------------------------