TSTP Solution File: GRP609-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP609-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:21:47 EDT 2023

% Result   : Unsatisfiable 0.15s 0.56s
% Output   : CNFRefutation 0.15s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   45 (  40 unt;   5 typ;   0 def)
%            Number of atoms       :   40 (  39 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    4 (   4   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   91 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    double_divide: ( $i * $i ) > $i ).

tff(decl_23,type,
    inverse: $i > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    a1: $i ).

tff(decl_26,type,
    b1: $i ).

cnf(single_axiom,axiom,
    inverse(double_divide(inverse(double_divide(inverse(double_divide(X1,X2)),X3)),double_divide(X1,X3))) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_1,negated_conjecture,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_1) ).

cnf(multiply,axiom,
    multiply(X1,X2) = inverse(double_divide(X2,X1)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_0_3,axiom,
    inverse(double_divide(inverse(double_divide(inverse(double_divide(X1,X2)),X3)),double_divide(X1,X3))) = X2,
    single_axiom ).

cnf(c_0_4,plain,
    inverse(double_divide(X1,double_divide(inverse(double_divide(X2,X1)),double_divide(X2,X3)))) = X3,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_5,plain,
    inverse(double_divide(inverse(double_divide(X1,X2)),double_divide(inverse(double_divide(inverse(double_divide(X3,X1)),X4)),X2))) = double_divide(X3,X4),
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_6,plain,
    double_divide(X1,inverse(double_divide(X2,double_divide(inverse(double_divide(X1,X2)),X3)))) = X3,
    inference(spm,[status(thm)],[c_0_4,c_0_5]) ).

cnf(c_0_7,plain,
    double_divide(inverse(double_divide(X1,X2)),double_divide(X1,inverse(double_divide(X2,X3)))) = X3,
    inference(spm,[status(thm)],[c_0_6,c_0_5]) ).

cnf(c_0_8,plain,
    inverse(double_divide(inverse(X1),double_divide(X2,double_divide(X2,inverse(double_divide(X3,X1)))))) = X3,
    inference(spm,[status(thm)],[c_0_3,c_0_7]) ).

cnf(c_0_9,plain,
    double_divide(inverse(double_divide(X1,inverse(X2))),inverse(double_divide(X3,X2))) = double_divide(X1,X3),
    inference(spm,[status(thm)],[c_0_6,c_0_8]) ).

cnf(c_0_10,plain,
    double_divide(X1,inverse(double_divide(inverse(X2),double_divide(X1,X3)))) = inverse(double_divide(X3,X2)),
    inference(spm,[status(thm)],[c_0_6,c_0_9]) ).

cnf(c_0_11,plain,
    inverse(double_divide(X1,double_divide(inverse(double_divide(X2,X3)),X1))) = double_divide(X2,X3),
    inference(spm,[status(thm)],[c_0_10,c_0_3]) ).

cnf(c_0_12,plain,
    double_divide(X1,double_divide(X1,X2)) = X2,
    inference(spm,[status(thm)],[c_0_4,c_0_11]) ).

cnf(c_0_13,plain,
    inverse(inverse(double_divide(X1,X2))) = double_divide(X1,X2),
    inference(spm,[status(thm)],[c_0_11,c_0_7]) ).

cnf(c_0_14,plain,
    double_divide(inverse(X1),inverse(X2)) = inverse(double_divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_10,c_0_12]) ).

cnf(c_0_15,plain,
    inverse(inverse(X1)) = X1,
    inference(spm,[status(thm)],[c_0_13,c_0_7]) ).

cnf(c_0_16,plain,
    inverse(double_divide(double_divide(X1,X2),X2)) = inverse(X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_12,c_0_14]),c_0_14]) ).

cnf(c_0_17,plain,
    double_divide(inverse(double_divide(X1,inverse(X2))),X3) = inverse(double_divide(double_divide(X1,X3),X2)),
    inference(spm,[status(thm)],[c_0_10,c_0_4]) ).

cnf(c_0_18,plain,
    inverse(double_divide(X1,inverse(X2))) = double_divide(X2,inverse(X1)),
    inference(spm,[status(thm)],[c_0_14,c_0_15]) ).

cnf(c_0_19,plain,
    double_divide(double_divide(X1,X2),X2) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_15,c_0_16]),c_0_15]) ).

cnf(c_0_20,plain,
    double_divide(inverse(double_divide(X1,X2)),X3) = double_divide(X1,inverse(double_divide(X2,X3))),
    inference(spm,[status(thm)],[c_0_6,c_0_12]) ).

cnf(c_0_21,plain,
    inverse(double_divide(inverse(X1),X2)) = double_divide(inverse(X2),X1),
    inference(spm,[status(thm)],[c_0_14,c_0_15]) ).

cnf(c_0_22,plain,
    double_divide(double_divide(X1,inverse(X2)),X3) = inverse(double_divide(double_divide(X2,X3),X1)),
    inference(rw,[status(thm)],[c_0_17,c_0_18]) ).

cnf(c_0_23,plain,
    double_divide(X1,double_divide(X2,X1)) = X2,
    inference(spm,[status(thm)],[c_0_19,c_0_12]) ).

cnf(c_0_24,plain,
    double_divide(X1,inverse(double_divide(double_divide(X1,X2),X3))) = double_divide(inverse(X2),X3),
    inference(spm,[status(thm)],[c_0_20,c_0_12]) ).

cnf(c_0_25,plain,
    double_divide(X1,double_divide(inverse(X2),X3)) = inverse(double_divide(double_divide(X1,X2),X3)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_20,c_0_18]),c_0_21]),c_0_22]) ).

cnf(c_0_26,plain,
    double_divide(double_divide(X1,X2),inverse(X3)) = double_divide(inverse(X2),double_divide(X3,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_20]),c_0_18]) ).

cnf(c_0_27,plain,
    double_divide(double_divide(inverse(X1),X2),X3) = inverse(double_divide(double_divide(X1,X3),X2)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_20,c_0_21]),c_0_14]) ).

cnf(c_0_28,plain,
    double_divide(double_divide(X1,X2),X1) = X2,
    inference(spm,[status(thm)],[c_0_12,c_0_19]) ).

cnf(c_0_29,negated_conjecture,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    prove_these_axioms_1 ).

cnf(c_0_30,axiom,
    multiply(X1,X2) = inverse(double_divide(X2,X1)),
    multiply ).

cnf(c_0_31,plain,
    double_divide(X1,double_divide(X2,inverse(X3))) = inverse(double_divide(X2,double_divide(X1,X3))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_14,c_0_20]),c_0_18]) ).

cnf(c_0_32,plain,
    double_divide(double_divide(X1,X2),double_divide(double_divide(X2,X1),X3)) = X3,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_25]),c_0_20]),c_0_26]),c_0_27]),c_0_15]) ).

cnf(c_0_33,plain,
    double_divide(X1,X2) = double_divide(X2,X1),
    inference(spm,[status(thm)],[c_0_19,c_0_28]) ).

cnf(c_0_34,negated_conjecture,
    inverse(double_divide(b1,inverse(b1))) != inverse(double_divide(a1,inverse(a1))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_29,c_0_30]),c_0_30]) ).

cnf(c_0_35,plain,
    double_divide(X1,inverse(double_divide(X2,double_divide(X1,X3)))) = double_divide(X2,inverse(X3)),
    inference(spm,[status(thm)],[c_0_12,c_0_31]) ).

cnf(c_0_36,plain,
    double_divide(double_divide(X1,X2),double_divide(X3,double_divide(X2,X1))) = X3,
    inference(spm,[status(thm)],[c_0_32,c_0_33]) ).

cnf(c_0_37,negated_conjecture,
    double_divide(a1,inverse(a1)) != double_divide(b1,inverse(b1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_34,c_0_18]),c_0_18]) ).

cnf(c_0_38,plain,
    double_divide(X1,inverse(X1)) = double_divide(X2,inverse(X2)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_36]),c_0_26]),c_0_33]),c_0_23]),c_0_33]) ).

cnf(c_0_39,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[c_0_37,c_0_38]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.02/0.10  % Problem    : GRP609-1 : TPTP v8.1.2. Released v2.6.0.
% 0.02/0.10  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.11/0.31  % Computer : n023.cluster.edu
% 0.11/0.31  % Model    : x86_64 x86_64
% 0.11/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.31  % Memory   : 8042.1875MB
% 0.11/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.31  % CPULimit   : 300
% 0.11/0.31  % WCLimit    : 300
% 0.11/0.31  % DateTime   : Tue Aug 29 02:51:10 EDT 2023
% 0.11/0.31  % CPUTime  : 
% 0.15/0.53  start to proof: theBenchmark
% 0.15/0.56  % Version  : CSE_E---1.5
% 0.15/0.56  % Problem  : theBenchmark.p
% 0.15/0.56  % Proof found
% 0.15/0.56  % SZS status Theorem for theBenchmark.p
% 0.15/0.56  % SZS output start Proof
% See solution above
% 0.15/0.56  % Total time : 0.018000 s
% 0.15/0.56  % SZS output end Proof
% 0.15/0.56  % Total time : 0.020000 s
%------------------------------------------------------------------------------