TSTP Solution File: GRP605-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP605-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:21 EDT 2022

% Result   : Unsatisfiable 1.66s 1.88s
% Output   : Refutation 1.66s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   26 (  26 unt;   0 nHn;   3 RR)
%            Number of literals    :   26 (  25 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   53 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('GRP605-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(inverse(b1),b1) != multiply(inverse(a1),a1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    double_divide(inverse(double_divide(A,inverse(double_divide(inverse(B),double_divide(A,C))))),C) = B,
    file('GRP605-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP605-1.p',unknown),
    [] ).

cnf(8,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    double_divide(multiply(multiply(double_divide(A,B),inverse(C)),A),B) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),8,8]),
    [iquote('back_demod,4,demod,8,8')] ).

cnf(11,plain,
    double_divide(multiply(multiply(A,inverse(B)),multiply(multiply(double_divide(C,D),inverse(A)),C)),D) = B,
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.1.1.1,9.1.1')] ).

cnf(15,plain,
    multiply(A,multiply(multiply(double_divide(B,A),inverse(C)),B)) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[9,8])]),
    [iquote('para_from,9.1.1,7.1.1.1,flip.1')] ).

cnf(37,plain,
    double_divide(inverse(A),multiply(A,inverse(B))) = B,
    inference(para_into,[status(thm),theory(equality)],[11,15]),
    [iquote('para_into,11.1.1.1,15.1.1')] ).

cnf(53,plain,
    multiply(multiply(A,inverse(B)),inverse(A)) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[37,8])]),
    [iquote('para_from,37.1.1,7.1.1.1,flip.1')] ).

cnf(57,plain,
    multiply(multiply(A,multiply(B,C)),inverse(A)) = multiply(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[53,8]),8]),
    [iquote('para_into,53.1.1.1.2,7.1.1,demod,8')] ).

cnf(59,plain,
    multiply(inverse(A),inverse(multiply(B,inverse(A)))) = inverse(B),
    inference(para_into,[status(thm),theory(equality)],[53,53]),
    [iquote('para_into,53.1.1.1,53.1.1')] ).

cnf(63,plain,
    double_divide(inverse(multiply(A,inverse(B))),inverse(B)) = A,
    inference(para_from,[status(thm),theory(equality)],[53,37]),
    [iquote('para_from,53.1.1,37.1.1.2')] ).

cnf(69,plain,
    double_divide(inverse(inverse(A)),inverse(B)) = multiply(B,inverse(A)),
    inference(para_into,[status(thm),theory(equality)],[63,53]),
    [iquote('para_into,63.1.1.1.1,53.1.1')] ).

cnf(70,plain,
    multiply(A,inverse(B)) = double_divide(inverse(inverse(B)),inverse(A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[69])]),
    [iquote('copy,69,flip.1')] ).

cnf(84,plain,
    inverse(multiply(A,inverse(B))) = multiply(inverse(A),inverse(inverse(B))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[59,53])]),
    [iquote('para_into,59.1.1.2.1,53.1.1,flip.1')] ).

cnf(95,plain,
    double_divide(multiply(inverse(A),inverse(inverse(B))),inverse(B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[63]),84]),
    [iquote('back_demod,63,demod,84')] ).

cnf(143,plain,
    multiply(double_divide(inverse(inverse(A)),inverse(B)),inverse(B)) = inverse(A),
    inference(para_from,[status(thm),theory(equality)],[70,53]),
    [iquote('para_from,70.1.1,53.1.1.1')] ).

cnf(398,plain,
    multiply(inverse(A),multiply(inverse(B),inverse(inverse(B)))) = inverse(A),
    inference(para_from,[status(thm),theory(equality)],[143,15]),
    [iquote('para_from,143.1.1,15.1.1.2.1')] ).

cnf(400,plain,
    double_divide(multiply(multiply(A,inverse(B)),multiply(inverse(C),inverse(inverse(C)))),inverse(A)) = B,
    inference(para_from,[status(thm),theory(equality)],[143,11]),
    [iquote('para_from,143.1.1,11.1.1.1.2.1')] ).

cnf(475,plain,
    multiply(multiply(A,B),multiply(inverse(C),inverse(inverse(C)))) = multiply(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[398,8]),8]),
    [iquote('para_into,398.1.1.1,7.1.1,demod,8')] ).

cnf(494,plain,
    double_divide(multiply(A,inverse(B)),inverse(A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[400]),475]),
    [iquote('back_demod,400,demod,475')] ).

cnf(498,plain,
    multiply(inverse(A),inverse(inverse(A))) = multiply(inverse(B),inverse(inverse(B))),
    inference(para_from,[status(thm),theory(equality)],[398,57]),
    [iquote('para_from,398.1.1,57.1.1.1')] ).

cnf(511,plain,
    inverse(inverse(A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[494,95])]),
    [iquote('para_into,494.1.1,95.1.1,flip.1')] ).

cnf(519,plain,
    multiply(inverse(A),A) = multiply(inverse(B),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[498]),511,511]),
    [iquote('back_demod,498,demod,511,511')] ).

cnf(520,plain,
    $false,
    inference(binary,[status(thm)],[519,2]),
    [iquote('binary,519.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP605-1 : TPTP v8.1.0. Released v2.6.0.
% 0.10/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n003.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:00:26 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.66/1.88  ----- Otter 3.3f, August 2004 -----
% 1.66/1.88  The process was started by sandbox on n003.cluster.edu,
% 1.66/1.88  Wed Jul 27 05:00:26 2022
% 1.66/1.88  The command was "./otter".  The process ID is 12133.
% 1.66/1.88  
% 1.66/1.88  set(prolog_style_variables).
% 1.66/1.88  set(auto).
% 1.66/1.88     dependent: set(auto1).
% 1.66/1.88     dependent: set(process_input).
% 1.66/1.88     dependent: clear(print_kept).
% 1.66/1.88     dependent: clear(print_new_demod).
% 1.66/1.88     dependent: clear(print_back_demod).
% 1.66/1.88     dependent: clear(print_back_sub).
% 1.66/1.88     dependent: set(control_memory).
% 1.66/1.88     dependent: assign(max_mem, 12000).
% 1.66/1.88     dependent: assign(pick_given_ratio, 4).
% 1.66/1.88     dependent: assign(stats_level, 1).
% 1.66/1.88     dependent: assign(max_seconds, 10800).
% 1.66/1.88  clear(print_given).
% 1.66/1.88  
% 1.66/1.88  list(usable).
% 1.66/1.88  0 [] A=A.
% 1.66/1.88  0 [] double_divide(inverse(double_divide(A,inverse(double_divide(inverse(B),double_divide(A,C))))),C)=B.
% 1.66/1.88  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.66/1.88  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1).
% 1.66/1.88  end_of_list.
% 1.66/1.88  
% 1.66/1.88  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.66/1.88  
% 1.66/1.88  All clauses are units, and equality is present; the
% 1.66/1.88  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.66/1.88  
% 1.66/1.88     dependent: set(knuth_bendix).
% 1.66/1.88     dependent: set(anl_eq).
% 1.66/1.88     dependent: set(para_from).
% 1.66/1.88     dependent: set(para_into).
% 1.66/1.88     dependent: clear(para_from_right).
% 1.66/1.88     dependent: clear(para_into_right).
% 1.66/1.88     dependent: set(para_from_vars).
% 1.66/1.88     dependent: set(eq_units_both_ways).
% 1.66/1.88     dependent: set(dynamic_demod_all).
% 1.66/1.88     dependent: set(dynamic_demod).
% 1.66/1.88     dependent: set(order_eq).
% 1.66/1.88     dependent: set(back_demod).
% 1.66/1.88     dependent: set(lrpo).
% 1.66/1.88  
% 1.66/1.88  ------------> process usable:
% 1.66/1.88  ** KEPT (pick-wt=9): 2 [copy,1,flip.1] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1).
% 1.66/1.88  
% 1.66/1.88  ------------> process sos:
% 1.66/1.88  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.66/1.88  ** KEPT (pick-wt=14): 4 [] double_divide(inverse(double_divide(A,inverse(double_divide(inverse(B),double_divide(A,C))))),C)=B.
% 1.66/1.88  ---> New Demodulator: 5 [new_demod,4] double_divide(inverse(double_divide(A,inverse(double_divide(inverse(B),double_divide(A,C))))),C)=B.
% 1.66/1.88  ** KEPT (pick-wt=8): 7 [copy,6,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.66/1.88  ---> New Demodulator: 8 [new_demod,7] inverse(double_divide(A,B))=multiply(B,A).
% 1.66/1.88    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.66/1.88  >>>> Starting back demodulation with 5.
% 1.66/1.88  >>>> Starting back demodulation with 8.
% 1.66/1.88      >> back demodulating 4 with 8.
% 1.66/1.88  >>>> Starting back demodulation with 10.
% 1.66/1.88  
% 1.66/1.88  ======= end of input processing =======
% 1.66/1.88  
% 1.66/1.88  =========== start of search ===========
% 1.66/1.88  
% 1.66/1.88  -------- PROOF -------- 
% 1.66/1.88  
% 1.66/1.88  ----> UNIT CONFLICT at   0.01 sec ----> 520 [binary,519.1,2.1] $F.
% 1.66/1.88  
% 1.66/1.88  Length of proof is 22.  Level of proof is 14.
% 1.66/1.88  
% 1.66/1.88  ---------------- PROOF ----------------
% 1.66/1.88  % SZS status Unsatisfiable
% 1.66/1.88  % SZS output start Refutation
% See solution above
% 1.66/1.88  ------------ end of proof -------------
% 1.66/1.88  
% 1.66/1.88  
% 1.66/1.88  Search stopped by max_proofs option.
% 1.66/1.88  
% 1.66/1.88  
% 1.66/1.88  Search stopped by max_proofs option.
% 1.66/1.88  
% 1.66/1.88  ============ end of search ============
% 1.66/1.88  
% 1.66/1.88  -------------- statistics -------------
% 1.66/1.88  clauses given                 28
% 1.66/1.88  clauses generated            474
% 1.66/1.88  clauses kept                 284
% 1.66/1.88  clauses forward subsumed     288
% 1.66/1.88  clauses back subsumed          0
% 1.66/1.88  Kbytes malloced             3906
% 1.66/1.88  
% 1.66/1.88  ----------- times (seconds) -----------
% 1.66/1.88  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.66/1.88  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.66/1.88  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.66/1.88  
% 1.66/1.88  That finishes the proof of the theorem.
% 1.66/1.88  
% 1.66/1.88  Process 12133 finished Wed Jul 27 05:00:28 2022
% 1.66/1.88  Otter interrupted
% 1.66/1.89  PROOF FOUND
%------------------------------------------------------------------------------