TSTP Solution File: GRP603-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GRP603-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:19:05 EDT 2023

% Result   : Unsatisfiable 0.19s 0.40s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP603-1 : TPTP v8.1.2. Released v2.6.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n025.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.19/0.34  % CPULimit : 300
% 0.19/0.34  % WCLimit  : 300
% 0.19/0.34  % DateTime : Tue Aug 29 02:43:24 EDT 2023
% 0.19/0.34  % CPUTime  : 
% 0.19/0.40  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.19/0.40  
% 0.19/0.40  % SZS status Unsatisfiable
% 0.19/0.40  
% 0.19/0.42  % SZS output start Proof
% 0.19/0.42  Axiom 1 (multiply): multiply(X, Y) = inverse(double_divide(Y, X)).
% 0.19/0.42  Axiom 2 (single_axiom): inverse(double_divide(inverse(double_divide(X, inverse(double_divide(Y, double_divide(X, Z))))), Z)) = Y.
% 0.19/0.42  
% 0.19/0.42  Lemma 3: multiply(X, multiply(multiply(double_divide(Y, X), Z), Y)) = Z.
% 0.19/0.42  Proof:
% 0.19/0.42    multiply(X, multiply(multiply(double_divide(Y, X), Z), Y))
% 0.19/0.42  = { by axiom 1 (multiply) }
% 0.19/0.42    multiply(X, multiply(inverse(double_divide(Z, double_divide(Y, X))), Y))
% 0.19/0.42  = { by axiom 1 (multiply) }
% 0.19/0.42    multiply(X, inverse(double_divide(Y, inverse(double_divide(Z, double_divide(Y, X))))))
% 0.19/0.42  = { by axiom 1 (multiply) }
% 0.19/0.42    inverse(double_divide(inverse(double_divide(Y, inverse(double_divide(Z, double_divide(Y, X))))), X))
% 0.19/0.42  = { by axiom 2 (single_axiom) }
% 0.19/0.42    Z
% 0.19/0.42  
% 0.19/0.42  Lemma 4: multiply(multiply(double_divide(X, double_divide(Y, Z)), W), X) = multiply(Z, multiply(W, Y)).
% 0.19/0.42  Proof:
% 0.19/0.42    multiply(multiply(double_divide(X, double_divide(Y, Z)), W), X)
% 0.19/0.42  = { by lemma 3 R->L }
% 0.19/0.42    multiply(Z, multiply(multiply(double_divide(Y, Z), multiply(multiply(double_divide(X, double_divide(Y, Z)), W), X)), Y))
% 0.19/0.42  = { by lemma 3 }
% 0.19/0.42    multiply(Z, multiply(W, Y))
% 0.19/0.42  
% 0.19/0.42  Lemma 5: multiply(double_divide(X, Y), multiply(Y, multiply(Z, X))) = Z.
% 0.19/0.42  Proof:
% 0.19/0.42    multiply(double_divide(X, Y), multiply(Y, multiply(Z, X)))
% 0.19/0.42  = { by lemma 4 R->L }
% 0.19/0.42    multiply(double_divide(X, Y), multiply(multiply(double_divide(W, double_divide(X, Y)), Z), W))
% 0.19/0.42  = { by lemma 3 }
% 0.19/0.42    Z
% 0.19/0.42  
% 0.19/0.42  Lemma 6: double_divide(multiply(X, W), double_divide(W, Z)) = multiply(double_divide(X, Y), multiply(Y, Z)).
% 0.19/0.42  Proof:
% 0.19/0.42    double_divide(multiply(X, W), double_divide(W, Z))
% 0.19/0.42  = { by lemma 5 R->L }
% 0.19/0.42    multiply(double_divide(X, Y), multiply(Y, multiply(double_divide(multiply(X, W), double_divide(W, Z)), X)))
% 0.19/0.42  = { by lemma 5 R->L }
% 0.19/0.42    multiply(double_divide(X, Y), multiply(Y, multiply(double_divide(multiply(X, W), double_divide(W, Z)), multiply(double_divide(W, Z), multiply(Z, multiply(X, W))))))
% 0.19/0.42  = { by lemma 5 }
% 0.19/0.42    multiply(double_divide(X, Y), multiply(Y, Z))
% 0.19/0.42  
% 0.19/0.42  Lemma 7: double_divide(multiply(X, Y), double_divide(Y, multiply(Z, X))) = Z.
% 0.19/0.42  Proof:
% 0.19/0.42    double_divide(multiply(X, Y), double_divide(Y, multiply(Z, X)))
% 0.19/0.42  = { by lemma 6 }
% 0.19/0.42    multiply(double_divide(X, W), multiply(W, multiply(Z, X)))
% 0.19/0.42  = { by lemma 5 }
% 0.19/0.42    Z
% 0.19/0.42  
% 0.19/0.42  Lemma 8: multiply(double_divide(X, multiply(Y, Z)), multiply(Z, X)) = inverse(Y).
% 0.19/0.42  Proof:
% 0.19/0.42    multiply(double_divide(X, multiply(Y, Z)), multiply(Z, X))
% 0.19/0.42  = { by axiom 1 (multiply) }
% 0.19/0.42    inverse(double_divide(multiply(Z, X), double_divide(X, multiply(Y, Z))))
% 0.19/0.42  = { by lemma 7 }
% 0.19/0.42    inverse(Y)
% 0.19/0.42  
% 0.19/0.42  Lemma 9: multiply(multiply(X, inverse(X)), Y) = Y.
% 0.19/0.42  Proof:
% 0.19/0.42    multiply(multiply(X, inverse(X)), Y)
% 0.19/0.42  = { by lemma 7 R->L }
% 0.19/0.42    multiply(multiply(double_divide(multiply(Z, W), double_divide(W, multiply(X, Z))), inverse(X)), Y)
% 0.19/0.42  = { by lemma 8 R->L }
% 0.19/0.42    multiply(multiply(double_divide(multiply(Z, W), double_divide(W, multiply(X, Z))), multiply(double_divide(W, multiply(X, Z)), multiply(Z, W))), Y)
% 0.19/0.42  = { by lemma 6 R->L }
% 0.19/0.42    multiply(double_divide(multiply(multiply(Z, W), V), double_divide(V, multiply(Z, W))), Y)
% 0.19/0.42  = { by lemma 6 }
% 0.19/0.43    multiply(multiply(double_divide(multiply(Z, W), double_divide(W, multiply(double_divide(Y, double_divide(U, T)), Z))), multiply(double_divide(W, multiply(double_divide(Y, double_divide(U, T)), Z)), multiply(Z, W))), Y)
% 0.19/0.43  = { by lemma 8 }
% 0.19/0.43    multiply(multiply(double_divide(multiply(Z, W), double_divide(W, multiply(double_divide(Y, double_divide(U, T)), Z))), inverse(double_divide(Y, double_divide(U, T)))), Y)
% 0.19/0.43  = { by lemma 7 }
% 0.19/0.43    multiply(multiply(double_divide(Y, double_divide(U, T)), inverse(double_divide(Y, double_divide(U, T)))), Y)
% 0.19/0.43  = { by lemma 4 }
% 0.19/0.43    multiply(T, multiply(inverse(double_divide(Y, double_divide(U, T))), U))
% 0.19/0.43  = { by axiom 1 (multiply) R->L }
% 0.19/0.43    multiply(T, multiply(multiply(double_divide(U, T), Y), U))
% 0.19/0.43  = { by lemma 3 }
% 0.19/0.43    Y
% 0.19/0.43  
% 0.19/0.43  Goal 1 (prove_these_axioms_3): multiply(multiply(a3, b3), c3) = multiply(a3, multiply(b3, c3)).
% 0.19/0.43  Proof:
% 0.19/0.43    multiply(multiply(a3, b3), c3)
% 0.19/0.43  = { by lemma 9 R->L }
% 0.19/0.43    multiply(multiply(a3, b3), multiply(multiply(a3, inverse(a3)), c3))
% 0.19/0.43  = { by lemma 8 R->L }
% 0.19/0.43    multiply(multiply(a3, b3), multiply(multiply(a3, multiply(double_divide(c3, multiply(a3, b3)), multiply(b3, c3))), c3))
% 0.19/0.43  = { by lemma 4 R->L }
% 0.19/0.43    multiply(multiply(a3, b3), multiply(multiply(multiply(double_divide(multiply(a3, multiply(b3, c3)), double_divide(multiply(b3, c3), a3)), double_divide(c3, multiply(a3, b3))), multiply(a3, multiply(b3, c3))), c3))
% 0.19/0.43  = { by lemma 9 R->L }
% 0.19/0.43    multiply(multiply(a3, b3), multiply(multiply(multiply(double_divide(multiply(a3, multiply(b3, c3)), double_divide(multiply(b3, c3), multiply(multiply(X, inverse(X)), a3))), double_divide(c3, multiply(a3, b3))), multiply(a3, multiply(b3, c3))), c3))
% 0.19/0.43  = { by lemma 7 }
% 0.19/0.43    multiply(multiply(a3, b3), multiply(multiply(multiply(multiply(X, inverse(X)), double_divide(c3, multiply(a3, b3))), multiply(a3, multiply(b3, c3))), c3))
% 0.19/0.43  = { by lemma 9 }
% 0.19/0.43    multiply(multiply(a3, b3), multiply(multiply(double_divide(c3, multiply(a3, b3)), multiply(a3, multiply(b3, c3))), c3))
% 0.19/0.43  = { by lemma 3 }
% 0.19/0.43    multiply(a3, multiply(b3, c3))
% 0.19/0.43  % SZS output end Proof
% 0.19/0.43  
% 0.19/0.43  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------