TSTP Solution File: GRP601-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP601-1 : TPTP v8.2.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Mon Jun 24 07:00:54 EDT 2024

% Result   : Unsatisfiable 3.53s 1.15s
% Output   : CNFRefutation 3.53s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   35
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   61 (  61 unt;   0 nHn;   4 RR)
%            Number of literals    :   61 (  60 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  151 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    inverse(double_divide(inverse(double_divide(X0,inverse(double_divide(X1,double_divide(X0,X2))))),X2)) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,negated_conjecture,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms_1) ).

cnf(c_60,plain,
    multiply(X0,multiply(multiply(double_divide(X1,X0),X2),X1)) = X2,
    inference(demodulation,[status(thm)],[c_49,c_50]) ).

cnf(c_97,plain,
    multiply(multiply(double_divide(X0,double_divide(X1,X2)),X3),X0) = multiply(X2,multiply(X3,X1)),
    inference(superposition,[status(thm)],[c_60,c_60]) ).

cnf(c_101,plain,
    multiply(double_divide(X0,X1),multiply(X1,multiply(X2,X0))) = X2,
    inference(superposition,[status(thm)],[c_97,c_60]) ).

cnf(c_106,plain,
    multiply(double_divide(multiply(multiply(double_divide(X0,X1),X2),X0),X3),multiply(X3,X2)) = X1,
    inference(superposition,[status(thm)],[c_60,c_101]) ).

cnf(c_110,plain,
    multiply(double_divide(multiply(X0,multiply(X1,X2)),X3),multiply(X3,X1)) = double_divide(X2,X0),
    inference(superposition,[status(thm)],[c_101,c_101]) ).

cnf(c_111,plain,
    multiply(double_divide(multiply(X0,X1),double_divide(X1,X2)),X0) = X2,
    inference(superposition,[status(thm)],[c_101,c_101]) ).

cnf(c_123,plain,
    double_divide(multiply(X0,X1),double_divide(X1,X2)) = multiply(double_divide(X0,X3),multiply(X3,X2)),
    inference(superposition,[status(thm)],[c_111,c_101]) ).

cnf(c_211,plain,
    double_divide(X0,multiply(double_divide(multiply(X1,X0),X2),X1)) = X2,
    inference(superposition,[status(thm)],[c_110,c_106]) ).

cnf(c_325,plain,
    double_divide(multiply(X0,X1),double_divide(X1,multiply(X2,X0))) = X2,
    inference(superposition,[status(thm)],[c_110,c_211]) ).

cnf(c_338,plain,
    multiply(multiply(double_divide(multiply(X0,X1),X2),X0),X1) = inverse(X2),
    inference(superposition,[status(thm)],[c_211,c_50]) ).

cnf(c_457,plain,
    multiply(double_divide(X0,multiply(X1,X2)),multiply(X2,X0)) = inverse(X1),
    inference(superposition,[status(thm)],[c_325,c_50]) ).

cnf(c_702,plain,
    multiply(double_divide(X0,double_divide(X0,multiply(X1,X2))),inverse(X1)) = X2,
    inference(superposition,[status(thm)],[c_457,c_101]) ).

cnf(c_948,plain,
    double_divide(multiply(inverse(X0),X1),multiply(X0,X2)) = double_divide(X1,X2),
    inference(superposition,[status(thm)],[c_702,c_211]) ).

cnf(c_1066,plain,
    double_divide(X0,multiply(double_divide(X0,X1),inverse(X2))) = multiply(X2,X1),
    inference(superposition,[status(thm)],[c_948,c_211]) ).

cnf(c_1193,plain,
    multiply(X0,double_divide(X1,multiply(X0,X2))) = double_divide(X1,X2),
    inference(superposition,[status(thm)],[c_702,c_1066]) ).

cnf(c_1269,plain,
    multiply(double_divide(multiply(X0,X1),X2),X2) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_211,c_1193]) ).

cnf(c_1397,plain,
    double_divide(multiply(X0,X1),double_divide(X1,multiply(X2,X0))) = multiply(double_divide(inverse(X2),X3),X3),
    inference(superposition,[status(thm)],[c_457,c_1269]) ).

cnf(c_1421,plain,
    multiply(double_divide(X0,X1),X0) = inverse(X1),
    inference(superposition,[status(thm)],[c_1269,c_338]) ).

cnf(c_1422,plain,
    double_divide(X0,double_divide(X0,X1)) = X1,
    inference(superposition,[status(thm)],[c_1269,c_211]) ).

cnf(c_1423,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_1269,c_457]) ).

cnf(c_1425,plain,
    multiply(double_divide(inverse(X0),X1),X1) = X0,
    inference(light_normalisation,[status(thm)],[c_1397,c_325]) ).

cnf(c_1427,plain,
    multiply(multiply(X0,X1),inverse(X0)) = X1,
    inference(demodulation,[status(thm)],[c_702,c_1422]) ).

cnf(c_1569,plain,
    multiply(multiply(X0,X1),X2) = multiply(X0,multiply(X1,X2)),
    inference(superposition,[status(thm)],[c_1422,c_97]) ).

cnf(c_1806,plain,
    double_divide(X0,double_divide(X0,X1)) = inverse(inverse(X1)),
    inference(superposition,[status(thm)],[c_1421,c_1423]) ).

cnf(c_1807,plain,
    inverse(inverse(X0)) = X0,
    inference(light_normalisation,[status(thm)],[c_1806,c_1422]) ).

cnf(c_1833,plain,
    multiply(double_divide(X0,X1),multiply(X1,X2)) = double_divide(inverse(X2),X0),
    inference(superposition,[status(thm)],[c_1425,c_101]) ).

cnf(c_1839,plain,
    double_divide(inverse(multiply(X0,X1)),X1) = X0,
    inference(demodulation,[status(thm)],[c_101,c_1833]) ).

cnf(c_1840,plain,
    double_divide(double_divide(X0,X1),X0) = X1,
    inference(light_normalisation,[status(thm)],[c_1839,c_1423]) ).

cnf(c_1865,plain,
    double_divide(X0,X1) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_1422,c_1840]) ).

cnf(c_1868,plain,
    multiply(X0,double_divide(X1,X0)) = inverse(X1),
    inference(superposition,[status(thm)],[c_1840,c_1421]) ).

cnf(c_1870,plain,
    multiply(X0,double_divide(X0,X1)) = inverse(X1),
    inference(superposition,[status(thm)],[c_1840,c_50]) ).

cnf(c_1913,plain,
    inverse(double_divide(X0,X1)) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_1865,c_50]) ).

cnf(c_1924,plain,
    multiply(X0,multiply(X1,inverse(X0))) = X1,
    inference(demodulation,[status(thm)],[c_1427,c_1569]) ).

cnf(c_1925,plain,
    double_divide(inverse(X0),X1) = multiply(X0,inverse(X1)),
    inference(superposition,[status(thm)],[c_1421,c_1924]) ).

cnf(c_1928,plain,
    multiply(inverse(X0),multiply(X1,X0)) = X1,
    inference(superposition,[status(thm)],[c_1807,c_1924]) ).

cnf(c_2019,plain,
    inverse(multiply(X0,X1)) = double_divide(X0,X1),
    inference(superposition,[status(thm)],[c_1870,c_1193]) ).

cnf(c_2045,plain,
    multiply(X0,X1) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_1913,c_50]) ).

cnf(c_2049,plain,
    multiply(inverse(b1),b1) != multiply(a1,inverse(a1)),
    inference(demodulation,[status(thm)],[c_51,c_2045]) ).

cnf(c_2070,plain,
    double_divide(a1,inverse(a1)) != double_divide(b1,inverse(b1)),
    inference(demodulation,[status(thm)],[c_2049,c_1865,c_1925,c_2045]) ).

cnf(c_2075,plain,
    multiply(inverse(X0),multiply(X0,X1)) = X1,
    inference(superposition,[status(thm)],[c_2045,c_1928]) ).

cnf(c_2122,plain,
    multiply(X0,multiply(inverse(X0),X1)) = X1,
    inference(superposition,[status(thm)],[c_1807,c_2075]) ).

cnf(c_2135,plain,
    multiply(inverse(X0),double_divide(X1,X2)) = double_divide(X1,multiply(X0,X2)),
    inference(superposition,[status(thm)],[c_2075,c_1193]) ).

cnf(c_2179,plain,
    double_divide(X0,inverse(X1)) = multiply(X1,inverse(X0)),
    inference(superposition,[status(thm)],[c_1868,c_2122]) ).

cnf(c_2264,plain,
    double_divide(double_divide(X0,X1),inverse(X2)) = multiply(X2,multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_50,c_2179]) ).

cnf(c_2394,plain,
    inverse(multiply(X0,multiply(X1,X2))) = multiply(inverse(X0),double_divide(X2,X1)),
    inference(superposition,[status(thm)],[c_2264,c_50]) ).

cnf(c_2429,plain,
    double_divide(X0,multiply(X1,X2)) = double_divide(X1,multiply(X2,X0)),
    inference(demodulation,[status(thm)],[c_2394,c_2019,c_2135]) ).

cnf(c_2458,plain,
    inverse(double_divide(X0,multiply(X1,X2))) = multiply(X2,multiply(X0,X1)),
    inference(superposition,[status(thm)],[c_2429,c_1913]) ).

cnf(c_2463,plain,
    inverse(double_divide(X0,multiply(X1,X2))) = multiply(multiply(X0,X1),X2),
    inference(superposition,[status(thm)],[c_2429,c_50]) ).

cnf(c_2615,plain,
    multiply(multiply(X0,X1),X2) = multiply(X1,multiply(X0,X2)),
    inference(superposition,[status(thm)],[c_2045,c_1569]) ).

cnf(c_2628,plain,
    inverse(multiply(X0,multiply(X1,X2))) = double_divide(X2,multiply(X0,X1)),
    inference(superposition,[status(thm)],[c_1569,c_1423]) ).

cnf(c_2692,plain,
    inverse(double_divide(X0,multiply(X1,X2))) = multiply(X1,multiply(X0,X2)),
    inference(light_normalisation,[status(thm)],[c_2463,c_2458,c_2615]) ).

cnf(c_2693,plain,
    multiply(X0,multiply(X1,X2)) = multiply(X1,multiply(X0,X2)),
    inference(demodulation,[status(thm)],[c_2692,c_1913]) ).

cnf(c_2744,plain,
    inverse(multiply(X0,multiply(X1,X2))) = double_divide(multiply(X0,X2),X1),
    inference(superposition,[status(thm)],[c_2693,c_1423]) ).

cnf(c_2754,plain,
    double_divide(multiply(X0,X1),X2) = double_divide(X1,multiply(X0,X2)),
    inference(light_normalisation,[status(thm)],[c_2744,c_2628]) ).

cnf(c_2793,plain,
    double_divide(X0,multiply(X1,double_divide(X0,X2))) = double_divide(inverse(X2),X1),
    inference(demodulation,[status(thm)],[c_123,c_1833,c_2754]) ).

cnf(c_2800,plain,
    double_divide(inverse(X0),X0) = double_divide(X1,inverse(X1)),
    inference(superposition,[status(thm)],[c_1868,c_2793]) ).

cnf(c_3115,plain,
    double_divide(X0,inverse(X0)) = double_divide(X1,inverse(X1)),
    inference(demodulation,[status(thm)],[c_2800,c_1865]) ).

cnf(c_3116,plain,
    $false,
    inference(backward_subsumption_resolution,[status(thm)],[c_2070,c_3115]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : GRP601-1 : TPTP v8.2.0. Released v2.6.0.
% 0.04/0.12  % Command  : run_iprover %s %d THM
% 0.13/0.34  % Computer : n017.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Thu Jun 20 10:07:39 EDT 2024
% 0.13/0.34  % CPUTime  : 
% 0.20/0.47  Running UEQ theorem proving
% 0.20/0.47  Running: /export/starexec/sandbox/solver/bin/run_problem --schedule casc_j12_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox/benchmark/theBenchmark.p 300
% 3.53/1.15  % SZS status Started for theBenchmark.p
% 3.53/1.15  % SZS status Unsatisfiable for theBenchmark.p
% 3.53/1.15  
% 3.53/1.15  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.53/1.15  
% 3.53/1.15  ------  iProver source info
% 3.53/1.15  
% 3.53/1.15  git: date: 2024-06-12 09:56:46 +0000
% 3.53/1.15  git: sha1: 4869ab62f0a3398f9d3a35e6db7918ebd3847e49
% 3.53/1.15  git: non_committed_changes: false
% 3.53/1.15  
% 3.53/1.15  ------ Parsing...successful
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  ------ Preprocessing... sup_sim: 1  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.53/1.15  
% 3.53/1.15  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.53/1.15  
% 3.53/1.15  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.53/1.15  ------ Proving...
% 3.53/1.15  ------ Problem Properties 
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  clauses                                 3
% 3.53/1.15  conjectures                             1
% 3.53/1.15  EPR                                     0
% 3.53/1.15  Horn                                    3
% 3.53/1.15  unary                                   3
% 3.53/1.15  binary                                  0
% 3.53/1.15  lits                                    3
% 3.53/1.15  lits eq                                 3
% 3.53/1.15  fd_pure                                 0
% 3.53/1.15  fd_pseudo                               0
% 3.53/1.15  fd_cond                                 0
% 3.53/1.15  fd_pseudo_cond                          0
% 3.53/1.15  AC symbols                              0
% 3.53/1.15  
% 3.53/1.15  ------ Input Options Time Limit: Unbounded
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  ------ 
% 3.53/1.15  Current options:
% 3.53/1.15  ------ 
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  ------ Proving...
% 3.53/1.15  
% 3.53/1.15  
% 3.53/1.15  % SZS status Unsatisfiable for theBenchmark.p
% 3.53/1.15  
% 3.53/1.15  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.53/1.15  
% 3.53/1.15  
%------------------------------------------------------------------------------