TSTP Solution File: GRP596-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP596-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:19 EDT 2022

% Result   : Unsatisfiable 1.66s 1.87s
% Output   : Refutation 1.66s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   21
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   41 (  41 unt;   0 nHn;   3 RR)
%            Number of literals    :   41 (  40 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  118 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(a,b) != multiply(b,a),
    file('GRP596-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(b,a) != multiply(a,b),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B)))))) = C,
    file('GRP596-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP596-1.p',unknown),
    [] ).

cnf(8,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    multiply(multiply(multiply(A,B),C),double_divide(C,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),8,8,8]),
    [iquote('back_demod,4,demod,8,8,8')] ).

cnf(11,plain,
    multiply(multiply(A,B),double_divide(B,multiply(multiply(C,A),D))) = double_divide(D,C),
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.1.1,9.1.1')] ).

cnf(13,plain,
    multiply(A,double_divide(double_divide(B,C),multiply(C,A))) = B,
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.1,9.1.1')] ).

cnf(17,plain,
    multiply(double_divide(A,B),double_divide(double_divide(C,multiply(multiply(B,D),A)),D)) = C,
    inference(para_into,[status(thm),theory(equality)],[13,9]),
    [iquote('para_into,13.1.1.2.2,9.1.1')] ).

cnf(36,plain,
    double_divide(multiply(A,double_divide(B,multiply(C,A))),C) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,13])]),
    [iquote('para_into,11.1.1,13.1.1,flip.1')] ).

cnf(67,plain,
    double_divide(double_divide(multiply(A,B),C),multiply(C,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[36,11]),
    [iquote('para_into,36.1.1.1,11.1.1')] ).

cnf(77,plain,
    inverse(A) = multiply(B,multiply(C,double_divide(A,multiply(B,C)))),
    inference(para_from,[status(thm),theory(equality)],[36,8]),
    [iquote('para_from,36.1.1,7.1.1.1')] ).

cnf(79,plain,
    multiply(A,multiply(B,double_divide(C,multiply(A,B)))) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[77])]),
    [iquote('copy,77,flip.1')] ).

cnf(103,plain,
    inverse(A) = multiply(multiply(B,C),double_divide(multiply(C,A),B)),
    inference(para_from,[status(thm),theory(equality)],[67,8]),
    [iquote('para_from,66.1.1,7.1.1.1')] ).

cnf(104,plain,
    multiply(multiply(A,B),double_divide(multiply(B,C),A)) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[103])]),
    [iquote('copy,103,flip.1')] ).

cnf(159,plain,
    multiply(double_divide(A,B),double_divide(C,D)) = double_divide(multiply(A,C),multiply(B,D)),
    inference(para_into,[status(thm),theory(equality)],[17,67]),
    [iquote('para_into,17.1.1.2.1,66.1.1')] ).

cnf(211,plain,
    multiply(inverse(A),double_divide(double_divide(multiply(B,A),C),C)) = B,
    inference(para_from,[status(thm),theory(equality)],[104,9]),
    [iquote('para_from,104.1.1,9.1.1.1')] ).

cnf(240,plain,
    multiply(multiply(A,inverse(B)),multiply(C,B)) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[211,79]),8])]),
    [iquote('para_from,211.1.1,79.1.1.2,demod,8,flip.1')] ).

cnf(242,plain,
    double_divide(multiply(A,B),multiply(C,inverse(B))) = double_divide(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[211,36])]),
    [iquote('para_from,211.1.1,36.1.1.1,flip.1')] ).

cnf(355,plain,
    double_divide(double_divide(A,B),multiply(multiply(B,inverse(C)),A)) = C,
    inference(para_from,[status(thm),theory(equality)],[242,67]),
    [iquote('para_from,242.1.1,66.1.1.1')] ).

cnf(357,plain,
    double_divide(multiply(inverse(A),double_divide(B,C)),C) = multiply(B,A),
    inference(para_from,[status(thm),theory(equality)],[242,36]),
    [iquote('para_from,242.1.1,36.1.1.1.2')] ).

cnf(374,plain,
    double_divide(A,multiply(multiply(B,inverse(C)),multiply(D,double_divide(A,multiply(B,D))))) = C,
    inference(para_into,[status(thm),theory(equality)],[355,36]),
    [iquote('para_into,355.1.1.1,36.1.1')] ).

cnf(402,plain,
    double_divide(multiply(multiply(multiply(A,B),double_divide(multiply(B,C),A)),double_divide(D,E)),E) = multiply(D,C),
    inference(para_into,[status(thm),theory(equality)],[357,103]),
    [iquote('para_into,357.1.1.1.1,103.1.1')] ).

cnf(410,plain,
    multiply(double_divide(multiply(A,B),C),B) = double_divide(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[357,211])]),
    [iquote('para_into,357.1.1.1,211.1.1,flip.1')] ).

cnf(415,plain,
    multiply(A,B) = double_divide(multiply(multiply(multiply(C,D),double_divide(multiply(D,B),C)),double_divide(A,E)),E),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[402])]),
    [iquote('copy,402,flip.1')] ).

cnf(439,plain,
    multiply(double_divide(double_divide(A,B),C),D) = double_divide(double_divide(multiply(A,D),B),C),
    inference(para_into,[status(thm),theory(equality)],[410,410]),
    [iquote('para_into,410.1.1.1.1,410.1.1')] ).

cnf(452,plain,
    multiply(A,double_divide(A,multiply(B,C))) = double_divide(C,B),
    inference(para_into,[status(thm),theory(equality)],[410,36]),
    [iquote('para_into,410.1.1.1,36.1.1')] ).

cnf(489,plain,
    multiply(multiply(A,inverse(B)),double_divide(C,D)) = multiply(A,double_divide(multiply(C,B),D)),
    inference(para_from,[status(thm),theory(equality)],[410,240]),
    [iquote('para_from,410.1.1,240.1.1.2')] ).

cnf(514,plain,
    multiply(A,double_divide(multiply(B,C),D)) = multiply(multiply(A,inverse(C)),double_divide(B,D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[489])]),
    [iquote('copy,489,flip.1')] ).

cnf(535,plain,
    inverse(multiply(A,B)) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[452,104]),
    [iquote('para_into,452.1.1,104.1.1')] ).

cnf(537,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[452,13])]),
    [iquote('para_into,452.1.1,13.1.1,flip.1')] ).

cnf(579,plain,
    multiply(inverse(A),multiply(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[211]),537]),
    [iquote('back_demod,211,demod,537')] ).

cnf(619,plain,
    multiply(A,double_divide(B,multiply(C,A))) = double_divide(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[537,36])]),
    [iquote('para_into,536.1.1.1,36.1.1,flip.1')] ).

cnf(634,plain,
    double_divide(A,multiply(multiply(B,inverse(C)),double_divide(A,B))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[374]),619]),
    [iquote('back_demod,374,demod,619')] ).

cnf(762,plain,
    multiply(multiply(A,inverse(B)),double_divide(C,A)) = double_divide(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[579,104]),535]),
    [iquote('para_from,579.1.1,104.1.1.2.1,demod,535')] ).

cnf(770,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[634]),762]),
    [iquote('back_demod,634,demod,762')] ).

cnf(782,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[770,770]),
    [iquote('para_into,770.1.1.2,770.1.1')] ).

cnf(818,plain,
    multiply(multiply(A,inverse(B)),C) = double_divide(B,double_divide(C,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[782,355])]),
    [iquote('para_into,782.1.1.1,355.1.1,flip.1')] ).

cnf(824,plain,
    multiply(A,double_divide(multiply(B,C),D)) = double_divide(C,double_divide(double_divide(B,D),A)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[514]),818]),
    [iquote('back_demod,514,demod,818')] ).

cnf(847,plain,
    multiply(A,B) = multiply(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[415]),824,159,439,67,537]),
    [iquote('back_demod,415,demod,824,159,439,67,537')] ).

cnf(848,plain,
    $false,
    inference(binary,[status(thm)],[847,2]),
    [iquote('binary,847.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : GRP596-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n019.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:06:22 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.66/1.87  ----- Otter 3.3f, August 2004 -----
% 1.66/1.87  The process was started by sandbox on n019.cluster.edu,
% 1.66/1.87  Wed Jul 27 05:06:22 2022
% 1.66/1.87  The command was "./otter".  The process ID is 13028.
% 1.66/1.87  
% 1.66/1.87  set(prolog_style_variables).
% 1.66/1.87  set(auto).
% 1.66/1.87     dependent: set(auto1).
% 1.66/1.87     dependent: set(process_input).
% 1.66/1.87     dependent: clear(print_kept).
% 1.66/1.87     dependent: clear(print_new_demod).
% 1.66/1.87     dependent: clear(print_back_demod).
% 1.66/1.87     dependent: clear(print_back_sub).
% 1.66/1.87     dependent: set(control_memory).
% 1.66/1.87     dependent: assign(max_mem, 12000).
% 1.66/1.87     dependent: assign(pick_given_ratio, 4).
% 1.66/1.87     dependent: assign(stats_level, 1).
% 1.66/1.87     dependent: assign(max_seconds, 10800).
% 1.66/1.87  clear(print_given).
% 1.66/1.87  
% 1.66/1.87  list(usable).
% 1.66/1.87  0 [] A=A.
% 1.66/1.87  0 [] inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B))))))=C.
% 1.66/1.87  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.66/1.87  0 [] multiply(a,b)!=multiply(b,a).
% 1.66/1.87  end_of_list.
% 1.66/1.87  
% 1.66/1.87  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.66/1.87  
% 1.66/1.87  All clauses are units, and equality is present; the
% 1.66/1.87  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.66/1.87  
% 1.66/1.87     dependent: set(knuth_bendix).
% 1.66/1.87     dependent: set(anl_eq).
% 1.66/1.87     dependent: set(para_from).
% 1.66/1.87     dependent: set(para_into).
% 1.66/1.87     dependent: clear(para_from_right).
% 1.66/1.87     dependent: clear(para_into_right).
% 1.66/1.87     dependent: set(para_from_vars).
% 1.66/1.87     dependent: set(eq_units_both_ways).
% 1.66/1.87     dependent: set(dynamic_demod_all).
% 1.66/1.87     dependent: set(dynamic_demod).
% 1.66/1.87     dependent: set(order_eq).
% 1.66/1.87     dependent: set(back_demod).
% 1.66/1.87     dependent: set(lrpo).
% 1.66/1.87  
% 1.66/1.87  ------------> process usable:
% 1.66/1.87  ** KEPT (pick-wt=7): 2 [copy,1,flip.1] multiply(b,a)!=multiply(a,b).
% 1.66/1.87  
% 1.66/1.87  ------------> process sos:
% 1.66/1.87  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.66/1.87  ** KEPT (pick-wt=14): 4 [] inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B))))))=C.
% 1.66/1.87  ---> New Demodulator: 5 [new_demod,4] inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B))))))=C.
% 1.66/1.87  ** KEPT (pick-wt=8): 7 [copy,6,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.66/1.87  ---> New Demodulator: 8 [new_demod,7] inverse(double_divide(A,B))=multiply(B,A).
% 1.66/1.87    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.66/1.87  >>>> Starting back demodulation with 5.
% 1.66/1.87  >>>> Starting back demodulation with 8.
% 1.66/1.87      >> back demodulating 4 with 8.
% 1.66/1.87  >>>> Starting back demodulation with 10.
% 1.66/1.87  
% 1.66/1.87  ======= end of input processing =======
% 1.66/1.87  
% 1.66/1.87  =========== start of search ===========
% 1.66/1.87  
% 1.66/1.87  
% 1.66/1.87  Resetting weight limit to 15.
% 1.66/1.87  
% 1.66/1.87  
% 1.66/1.87  Resetting weight limit to 15.
% 1.66/1.87  
% 1.66/1.87  sos_size=290
% 1.66/1.87  
% 1.66/1.87  -------- PROOF -------- 
% 1.66/1.87  
% 1.66/1.87  ----> UNIT CONFLICT at   0.02 sec ----> 848 [binary,847.1,2.1] $F.
% 1.66/1.87  
% 1.66/1.87  Length of proof is 37.  Level of proof is 20.
% 1.66/1.87  
% 1.66/1.87  ---------------- PROOF ----------------
% 1.66/1.87  % SZS status Unsatisfiable
% 1.66/1.87  % SZS output start Refutation
% See solution above
% 1.66/1.87  ------------ end of proof -------------
% 1.66/1.87  
% 1.66/1.87  
% 1.66/1.87  Search stopped by max_proofs option.
% 1.66/1.87  
% 1.66/1.87  
% 1.66/1.87  Search stopped by max_proofs option.
% 1.66/1.87  
% 1.66/1.87  ============ end of search ============
% 1.66/1.87  
% 1.66/1.87  -------------- statistics -------------
% 1.66/1.87  clauses given                 30
% 1.66/1.87  clauses generated            600
% 1.66/1.87  clauses kept                 594
% 1.66/1.87  clauses forward subsumed     480
% 1.66/1.87  clauses back subsumed          0
% 1.66/1.87  Kbytes malloced             4882
% 1.66/1.87  
% 1.66/1.87  ----------- times (seconds) -----------
% 1.66/1.87  user CPU time          0.02          (0 hr, 0 min, 0 sec)
% 1.66/1.87  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.66/1.87  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.66/1.87  
% 1.66/1.87  That finishes the proof of the theorem.
% 1.66/1.87  
% 1.66/1.87  Process 13028 finished Wed Jul 27 05:06:23 2022
% 1.66/1.87  Otter interrupted
% 1.66/1.87  PROOF FOUND
%------------------------------------------------------------------------------