TSTP Solution File: GRP593-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP593-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:19 EDT 2022

% Result   : Unsatisfiable 1.93s 2.17s
% Output   : Refutation 1.93s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   25
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   49 (  49 unt;   0 nHn;   4 RR)
%            Number of literals    :   49 (  48 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  133 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('GRP593-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(inverse(b1),b1) != multiply(inverse(a1),a1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B)))))) = C,
    file('GRP593-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP593-1.p',unknown),
    [] ).

cnf(8,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    multiply(multiply(multiply(A,B),C),double_divide(C,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),8,8,8]),
    [iquote('back_demod,4,demod,8,8,8')] ).

cnf(11,plain,
    multiply(multiply(A,B),double_divide(B,multiply(multiply(C,A),D))) = double_divide(D,C),
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.1.1,9.1.1')] ).

cnf(13,plain,
    multiply(A,double_divide(double_divide(B,C),multiply(C,A))) = B,
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.1,9.1.1')] ).

cnf(17,plain,
    multiply(double_divide(A,B),double_divide(double_divide(C,multiply(multiply(B,D),A)),D)) = C,
    inference(para_into,[status(thm),theory(equality)],[13,9]),
    [iquote('para_into,13.1.1.2.2,9.1.1')] ).

cnf(36,plain,
    double_divide(multiply(A,double_divide(B,multiply(C,A))),C) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,13])]),
    [iquote('para_into,11.1.1,13.1.1,flip.1')] ).

cnf(67,plain,
    double_divide(double_divide(multiply(A,B),C),multiply(C,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[36,11]),
    [iquote('para_into,36.1.1.1,11.1.1')] ).

cnf(77,plain,
    inverse(A) = multiply(B,multiply(C,double_divide(A,multiply(B,C)))),
    inference(para_from,[status(thm),theory(equality)],[36,8]),
    [iquote('para_from,36.1.1,7.1.1.1')] ).

cnf(79,plain,
    multiply(A,multiply(B,double_divide(C,multiply(A,B)))) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[77])]),
    [iquote('copy,77,flip.1')] ).

cnf(103,plain,
    inverse(A) = multiply(multiply(B,C),double_divide(multiply(C,A),B)),
    inference(para_from,[status(thm),theory(equality)],[67,8]),
    [iquote('para_from,66.1.1,7.1.1.1')] ).

cnf(104,plain,
    multiply(multiply(A,B),double_divide(multiply(B,C),A)) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[103])]),
    [iquote('copy,103,flip.1')] ).

cnf(161,plain,
    multiply(double_divide(A,B),double_divide(C,D)) = double_divide(multiply(A,C),multiply(B,D)),
    inference(para_into,[status(thm),theory(equality)],[17,67]),
    [iquote('para_into,17.1.1.2.1,66.1.1')] ).

cnf(215,plain,
    multiply(inverse(A),double_divide(double_divide(multiply(B,A),C),C)) = B,
    inference(para_from,[status(thm),theory(equality)],[104,9]),
    [iquote('para_from,104.1.1,9.1.1.1')] ).

cnf(244,plain,
    multiply(multiply(A,inverse(B)),multiply(C,B)) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[215,79]),8])]),
    [iquote('para_from,215.1.1,79.1.1.2,demod,8,flip.1')] ).

cnf(246,plain,
    double_divide(multiply(A,B),multiply(C,inverse(B))) = double_divide(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[215,36])]),
    [iquote('para_from,215.1.1,36.1.1.1,flip.1')] ).

cnf(359,plain,
    double_divide(double_divide(A,B),multiply(multiply(B,inverse(C)),A)) = C,
    inference(para_from,[status(thm),theory(equality)],[246,67]),
    [iquote('para_from,246.1.1,66.1.1.1')] ).

cnf(361,plain,
    double_divide(multiply(inverse(A),double_divide(B,C)),C) = multiply(B,A),
    inference(para_from,[status(thm),theory(equality)],[246,36]),
    [iquote('para_from,246.1.1,36.1.1.1.2')] ).

cnf(378,plain,
    double_divide(A,multiply(multiply(B,inverse(C)),multiply(D,double_divide(A,multiply(B,D))))) = C,
    inference(para_into,[status(thm),theory(equality)],[359,36]),
    [iquote('para_into,359.1.1.1,36.1.1')] ).

cnf(406,plain,
    double_divide(multiply(multiply(multiply(A,B),double_divide(multiply(B,C),A)),double_divide(D,E)),E) = multiply(D,C),
    inference(para_into,[status(thm),theory(equality)],[361,103]),
    [iquote('para_into,361.1.1.1.1,103.1.1')] ).

cnf(414,plain,
    multiply(double_divide(multiply(A,B),C),B) = double_divide(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[361,215])]),
    [iquote('para_into,361.1.1.1,215.1.1,flip.1')] ).

cnf(419,plain,
    multiply(A,B) = double_divide(multiply(multiply(multiply(C,D),double_divide(multiply(D,B),C)),double_divide(A,E)),E),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[406])]),
    [iquote('copy,406,flip.1')] ).

cnf(443,plain,
    multiply(double_divide(double_divide(A,B),C),D) = double_divide(double_divide(multiply(A,D),B),C),
    inference(para_into,[status(thm),theory(equality)],[414,414]),
    [iquote('para_into,414.1.1.1.1,414.1.1')] ).

cnf(456,plain,
    multiply(A,double_divide(A,multiply(B,C))) = double_divide(C,B),
    inference(para_into,[status(thm),theory(equality)],[414,36]),
    [iquote('para_into,414.1.1.1,36.1.1')] ).

cnf(493,plain,
    multiply(multiply(A,inverse(B)),double_divide(C,D)) = multiply(A,double_divide(multiply(C,B),D)),
    inference(para_from,[status(thm),theory(equality)],[414,244]),
    [iquote('para_from,414.1.1,244.1.1.2')] ).

cnf(518,plain,
    multiply(A,double_divide(multiply(B,C),D)) = multiply(multiply(A,inverse(C)),double_divide(B,D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[493])]),
    [iquote('copy,493,flip.1')] ).

cnf(539,plain,
    inverse(multiply(A,B)) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[456,104]),
    [iquote('para_into,456.1.1,104.1.1')] ).

cnf(541,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[456,13])]),
    [iquote('para_into,456.1.1,13.1.1,flip.1')] ).

cnf(583,plain,
    multiply(inverse(A),multiply(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[215]),541]),
    [iquote('back_demod,215,demod,541')] ).

cnf(597,plain,
    multiply(A,double_divide(B,A)) = inverse(B),
    inference(para_from,[status(thm),theory(equality)],[456,79]),
    [iquote('para_from,456.1.1,79.1.1.2')] ).

cnf(623,plain,
    multiply(A,double_divide(B,multiply(C,A))) = double_divide(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[541,36])]),
    [iquote('para_into,540.1.1.1,36.1.1,flip.1')] ).

cnf(638,plain,
    double_divide(A,multiply(multiply(B,inverse(C)),double_divide(A,B))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[378]),623]),
    [iquote('back_demod,378,demod,623')] ).

cnf(768,plain,
    multiply(multiply(A,inverse(B)),double_divide(C,A)) = double_divide(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[583,104]),539]),
    [iquote('para_from,583.1.1,104.1.1.2.1,demod,539')] ).

cnf(776,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[638]),768]),
    [iquote('back_demod,638,demod,768')] ).

cnf(788,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[776,776]),
    [iquote('para_into,776.1.1.2,776.1.1')] ).

cnf(824,plain,
    multiply(multiply(A,inverse(B)),C) = double_divide(B,double_divide(C,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[788,359])]),
    [iquote('para_into,788.1.1.1,359.1.1,flip.1')] ).

cnf(830,plain,
    multiply(A,double_divide(multiply(B,C),D)) = double_divide(C,double_divide(double_divide(B,D),A)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[518]),824]),
    [iquote('back_demod,518,demod,824')] ).

cnf(853,plain,
    multiply(A,B) = multiply(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[419]),830,161,443,67,541]),
    [iquote('back_demod,419,demod,830,161,443,67,541')] ).

cnf(934,plain,
    multiply(multiply(A,B),inverse(B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[853,583])]),
    [iquote('para_into,853.1.1,583.1.1,flip.1')] ).

cnf(948,plain,
    multiply(inverse(A),multiply(A,B)) = B,
    inference(para_from,[status(thm),theory(equality)],[853,583]),
    [iquote('para_from,853.1.1,583.1.1.2')] ).

cnf(966,plain,
    multiply(b1,inverse(b1)) != multiply(inverse(a1),a1),
    inference(para_from,[status(thm),theory(equality)],[853,2]),
    [iquote('para_from,853.1.1,2.1.1')] ).

cnf(1001,plain,
    multiply(multiply(A,B),C) = multiply(A,multiply(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[597,67]),8]),
    [iquote('para_into,597.1.1.2,66.1.1,demod,8')] ).

cnf(1026,plain,
    multiply(A,multiply(B,inverse(B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[934]),1001]),
    [iquote('back_demod,934,demod,1001')] ).

cnf(1226,plain,
    multiply(inverse(A),A) = multiply(B,inverse(B)),
    inference(para_from,[status(thm),theory(equality)],[1026,948]),
    [iquote('para_from,1026.1.1,948.1.1.2')] ).

cnf(1227,plain,
    multiply(A,inverse(A)) = multiply(inverse(B),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1226])]),
    [iquote('copy,1226,flip.1')] ).

cnf(1228,plain,
    $false,
    inference(binary,[status(thm)],[1227,966]),
    [iquote('binary,1227.1,966.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP593-1 : TPTP v8.1.0. Released v2.6.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n011.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:26:55 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.93/2.17  ----- Otter 3.3f, August 2004 -----
% 1.93/2.17  The process was started by sandbox2 on n011.cluster.edu,
% 1.93/2.17  Wed Jul 27 05:26:55 2022
% 1.93/2.17  The command was "./otter".  The process ID is 32662.
% 1.93/2.17  
% 1.93/2.17  set(prolog_style_variables).
% 1.93/2.17  set(auto).
% 1.93/2.17     dependent: set(auto1).
% 1.93/2.17     dependent: set(process_input).
% 1.93/2.17     dependent: clear(print_kept).
% 1.93/2.17     dependent: clear(print_new_demod).
% 1.93/2.17     dependent: clear(print_back_demod).
% 1.93/2.17     dependent: clear(print_back_sub).
% 1.93/2.17     dependent: set(control_memory).
% 1.93/2.17     dependent: assign(max_mem, 12000).
% 1.93/2.17     dependent: assign(pick_given_ratio, 4).
% 1.93/2.17     dependent: assign(stats_level, 1).
% 1.93/2.17     dependent: assign(max_seconds, 10800).
% 1.93/2.17  clear(print_given).
% 1.93/2.17  
% 1.93/2.17  list(usable).
% 1.93/2.17  0 [] A=A.
% 1.93/2.17  0 [] inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B))))))=C.
% 1.93/2.17  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.93/2.17  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1).
% 1.93/2.17  end_of_list.
% 1.93/2.17  
% 1.93/2.17  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.93/2.17  
% 1.93/2.17  All clauses are units, and equality is present; the
% 1.93/2.17  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.93/2.17  
% 1.93/2.17     dependent: set(knuth_bendix).
% 1.93/2.17     dependent: set(anl_eq).
% 1.93/2.17     dependent: set(para_from).
% 1.93/2.17     dependent: set(para_into).
% 1.93/2.17     dependent: clear(para_from_right).
% 1.93/2.17     dependent: clear(para_into_right).
% 1.93/2.17     dependent: set(para_from_vars).
% 1.93/2.17     dependent: set(eq_units_both_ways).
% 1.93/2.17     dependent: set(dynamic_demod_all).
% 1.93/2.17     dependent: set(dynamic_demod).
% 1.93/2.17     dependent: set(order_eq).
% 1.93/2.17     dependent: set(back_demod).
% 1.93/2.17     dependent: set(lrpo).
% 1.93/2.17  
% 1.93/2.17  ------------> process usable:
% 1.93/2.17  ** KEPT (pick-wt=9): 2 [copy,1,flip.1] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1).
% 1.93/2.17  
% 1.93/2.17  ------------> process sos:
% 1.93/2.17  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.93/2.17  ** KEPT (pick-wt=14): 4 [] inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B))))))=C.
% 1.93/2.17  ---> New Demodulator: 5 [new_demod,4] inverse(double_divide(double_divide(A,B),inverse(double_divide(A,inverse(double_divide(C,B))))))=C.
% 1.93/2.17  ** KEPT (pick-wt=8): 7 [copy,6,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.93/2.17  ---> New Demodulator: 8 [new_demod,7] inverse(double_divide(A,B))=multiply(B,A).
% 1.93/2.17    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.93/2.17  >>>> Starting back demodulation with 5.
% 1.93/2.17  >>>> Starting back demodulation with 8.
% 1.93/2.17      >> back demodulating 4 with 8.
% 1.93/2.17  >>>> Starting back demodulation with 10.
% 1.93/2.17  
% 1.93/2.17  ======= end of input processing =======
% 1.93/2.17  
% 1.93/2.17  =========== start of search ===========
% 1.93/2.17  
% 1.93/2.17  
% 1.93/2.17  Resetting weight limit to 15.
% 1.93/2.17  
% 1.93/2.17  
% 1.93/2.17  Resetting weight limit to 15.
% 1.93/2.17  
% 1.93/2.17  sos_size=294
% 1.93/2.17  
% 1.93/2.17  
% 1.93/2.17  Resetting weight limit to 9.
% 1.93/2.17  
% 1.93/2.17  
% 1.93/2.17  Resetting weight limit to 9.
% 1.93/2.17  
% 1.93/2.17  sos_size=368
% 1.93/2.17  
% 1.93/2.17  -------- PROOF -------- 
% 1.93/2.17  
% 1.93/2.17  ----> UNIT CONFLICT at   0.05 sec ----> 1228 [binary,1227.1,966.1] $F.
% 1.93/2.17  
% 1.93/2.17  Length of proof is 45.  Level of proof is 24.
% 1.93/2.17  
% 1.93/2.17  ---------------- PROOF ----------------
% 1.93/2.17  % SZS status Unsatisfiable
% 1.93/2.17  % SZS output start Refutation
% See solution above
% 1.93/2.17  ------------ end of proof -------------
% 1.93/2.17  
% 1.93/2.17  
% 1.93/2.17  Search stopped by max_proofs option.
% 1.93/2.17  
% 1.93/2.17  
% 1.93/2.17  Search stopped by max_proofs option.
% 1.93/2.17  
% 1.93/2.17  ============ end of search ============
% 1.93/2.17  
% 1.93/2.17  -------------- statistics -------------
% 1.93/2.17  clauses given                 54
% 1.93/2.17  clauses generated           1476
% 1.93/2.17  clauses kept                 872
% 1.93/2.17  clauses forward subsumed    1034
% 1.93/2.17  clauses back subsumed          0
% 1.93/2.17  Kbytes malloced             4882
% 1.93/2.17  
% 1.93/2.17  ----------- times (seconds) -----------
% 1.93/2.17  user CPU time          0.05          (0 hr, 0 min, 0 sec)
% 1.93/2.17  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.93/2.17  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.93/2.17  
% 1.93/2.17  That finishes the proof of the theorem.
% 1.93/2.17  
% 1.93/2.17  Process 32662 finished Wed Jul 27 05:26:57 2022
% 1.93/2.17  Otter interrupted
% 1.93/2.17  PROOF FOUND
%------------------------------------------------------------------------------