TSTP Solution File: GRP590-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP590-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:23:01 EDT 2024

% Result   : Unsatisfiable 3.64s 1.16s
% Output   : CNFRefutation 3.64s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(inverse(double_divide(double_divide(X0,X1),inverse(double_divide(X0,inverse(X2))))),X1) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_2) ).

cnf(c_60,plain,
    double_divide(multiply(multiply(inverse(X0),X1),double_divide(X1,X2)),X2) = X0,
    inference(demodulation,[status(thm)],[c_49,c_50]) ).

cnf(c_67,plain,
    inverse(b2) = sP0_iProver_def,
    definition ).

cnf(c_68,plain,
    multiply(sP0_iProver_def,b2) = sP1_iProver_def,
    definition ).

cnf(c_69,plain,
    multiply(sP1_iProver_def,a2) = sP2_iProver_def,
    definition ).

cnf(c_70,negated_conjecture,
    sP2_iProver_def != a2,
    inference(demodulation,[status(thm)],[c_51,c_67,c_68,c_69]) ).

cnf(c_114,plain,
    double_divide(multiply(multiply(multiply(X0,X1),X2),double_divide(X2,X3)),X3) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_50,c_60]) ).

cnf(c_115,plain,
    double_divide(multiply(multiply(sP0_iProver_def,X0),double_divide(X0,X1)),X1) = b2,
    inference(superposition,[status(thm)],[c_67,c_60]) ).

cnf(c_117,plain,
    multiply(X0,multiply(multiply(inverse(X1),X2),double_divide(X2,X0))) = inverse(X1),
    inference(superposition,[status(thm)],[c_60,c_50]) ).

cnf(c_118,plain,
    double_divide(multiply(multiply(inverse(X0),multiply(multiply(inverse(X1),X2),double_divide(X2,X3))),X1),X3) = X0,
    inference(superposition,[status(thm)],[c_60,c_60]) ).

cnf(c_123,plain,
    double_divide(multiply(sP1_iProver_def,double_divide(b2,X0)),X0) = b2,
    inference(superposition,[status(thm)],[c_68,c_115]) ).

cnf(c_127,plain,
    multiply(X0,multiply(multiply(sP0_iProver_def,X1),double_divide(X1,X0))) = inverse(b2),
    inference(superposition,[status(thm)],[c_115,c_50]) ).

cnf(c_129,plain,
    multiply(X0,multiply(multiply(sP0_iProver_def,X1),double_divide(X1,X0))) = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_127,c_67]) ).

cnf(c_135,plain,
    double_divide(multiply(multiply(sP0_iProver_def,multiply(sP1_iProver_def,double_divide(b2,X0))),b2),X0) = b2,
    inference(superposition,[status(thm)],[c_123,c_115]) ).

cnf(c_136,plain,
    multiply(X0,multiply(sP1_iProver_def,double_divide(b2,X0))) = inverse(b2),
    inference(superposition,[status(thm)],[c_123,c_50]) ).

cnf(c_138,plain,
    multiply(X0,multiply(sP1_iProver_def,double_divide(b2,X0))) = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_136,c_67]) ).

cnf(c_142,plain,
    double_divide(multiply(multiply(sP1_iProver_def,X0),double_divide(X0,X1)),X1) = double_divide(b2,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_68,c_114]) ).

cnf(c_270,plain,
    double_divide(multiply(sP2_iProver_def,double_divide(a2,X0)),X0) = double_divide(b2,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_69,c_142]) ).

cnf(c_331,plain,
    multiply(X0,multiply(sP2_iProver_def,double_divide(a2,X0))) = inverse(double_divide(b2,sP0_iProver_def)),
    inference(superposition,[status(thm)],[c_270,c_50]) ).

cnf(c_368,plain,
    multiply(X0,multiply(sP2_iProver_def,double_divide(a2,X0))) = sP1_iProver_def,
    inference(demodulation,[status(thm)],[c_331,c_50,c_68]) ).

cnf(c_403,plain,
    double_divide(multiply(sP0_iProver_def,b2),sP0_iProver_def) = b2,
    inference(superposition,[status(thm)],[c_138,c_135]) ).

cnf(c_411,plain,
    double_divide(sP1_iProver_def,sP0_iProver_def) = b2,
    inference(light_normalisation,[status(thm)],[c_403,c_68]) ).

cnf(c_425,plain,
    multiply(sP0_iProver_def,sP1_iProver_def) = inverse(b2),
    inference(superposition,[status(thm)],[c_411,c_50]) ).

cnf(c_427,plain,
    double_divide(multiply(multiply(inverse(X0),sP1_iProver_def),b2),sP0_iProver_def) = X0,
    inference(superposition,[status(thm)],[c_411,c_60]) ).

cnf(c_429,plain,
    multiply(sP0_iProver_def,multiply(multiply(inverse(X0),sP1_iProver_def),b2)) = inverse(X0),
    inference(superposition,[status(thm)],[c_411,c_117]) ).

cnf(c_430,plain,
    multiply(sP0_iProver_def,sP1_iProver_def) = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_425,c_67]) ).

cnf(c_547,plain,
    multiply(sP0_iProver_def,multiply(multiply(sP0_iProver_def,multiply(multiply(inverse(X0),sP1_iProver_def),b2)),X0)) = sP0_iProver_def,
    inference(superposition,[status(thm)],[c_427,c_129]) ).

cnf(c_551,plain,
    multiply(sP0_iProver_def,multiply(inverse(X0),X0)) = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_547,c_429]) ).

cnf(c_616,plain,
    double_divide(multiply(inverse(X0),X0),inverse(X1)) = X1,
    inference(superposition,[status(thm)],[c_117,c_118]) ).

cnf(c_974,plain,
    double_divide(multiply(sP0_iProver_def,b2),inverse(X0)) = X0,
    inference(superposition,[status(thm)],[c_67,c_616]) ).

cnf(c_979,plain,
    double_divide(multiply(multiply(sP0_iProver_def,multiply(inverse(X0),X0)),X1),inverse(X1)) = b2,
    inference(superposition,[status(thm)],[c_616,c_115]) ).

cnf(c_988,plain,
    double_divide(sP1_iProver_def,inverse(X0)) = X0,
    inference(light_normalisation,[status(thm)],[c_974,c_68]) ).

cnf(c_989,plain,
    double_divide(multiply(sP0_iProver_def,X0),inverse(X0)) = b2,
    inference(light_normalisation,[status(thm)],[c_979,c_551]) ).

cnf(c_1040,plain,
    double_divide(sP1_iProver_def,multiply(X0,X1)) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_50,c_988]) ).

cnf(c_1045,plain,
    multiply(inverse(X0),sP1_iProver_def) = inverse(X0),
    inference(superposition,[status(thm)],[c_988,c_50]) ).

cnf(c_1115,plain,
    multiply(multiply(X0,X1),sP1_iProver_def) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_50,c_1045]) ).

cnf(c_1125,plain,
    multiply(sP0_iProver_def,inverse(sP1_iProver_def)) = sP0_iProver_def,
    inference(superposition,[status(thm)],[c_1045,c_551]) ).

cnf(c_1241,plain,
    double_divide(sP0_iProver_def,inverse(sP1_iProver_def)) = b2,
    inference(superposition,[status(thm)],[c_430,c_989]) ).

cnf(c_1246,plain,
    double_divide(sP0_iProver_def,inverse(inverse(sP1_iProver_def))) = b2,
    inference(superposition,[status(thm)],[c_1125,c_989]) ).

cnf(c_1342,plain,
    multiply(inverse(sP1_iProver_def),sP0_iProver_def) = inverse(b2),
    inference(superposition,[status(thm)],[c_1241,c_50]) ).

cnf(c_1350,plain,
    multiply(inverse(sP1_iProver_def),sP0_iProver_def) = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1342,c_67]) ).

cnf(c_1389,plain,
    double_divide(multiply(sP0_iProver_def,double_divide(sP0_iProver_def,X0)),X0) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_1350,c_60]) ).

cnf(c_1401,plain,
    multiply(inverse(inverse(sP1_iProver_def)),sP0_iProver_def) = inverse(b2),
    inference(superposition,[status(thm)],[c_1246,c_50]) ).

cnf(c_1409,plain,
    multiply(inverse(inverse(sP1_iProver_def)),sP0_iProver_def) = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1401,c_67]) ).

cnf(c_1443,plain,
    double_divide(multiply(sP0_iProver_def,double_divide(sP0_iProver_def,X0)),X0) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_1409,c_60]) ).

cnf(c_1446,plain,
    inverse(sP1_iProver_def) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1443,c_1389]) ).

cnf(c_1460,plain,
    multiply(sP1_iProver_def,sP1_iProver_def) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_1446,c_1045]) ).

cnf(c_1461,plain,
    double_divide(sP1_iProver_def,sP1_iProver_def) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_1446,c_988]) ).

cnf(c_1467,plain,
    double_divide(multiply(inverse(X0),X0),sP1_iProver_def) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_1446,c_616]) ).

cnf(c_1828,plain,
    double_divide(multiply(multiply(multiply(X0,X1),sP1_iProver_def),sP1_iProver_def),sP1_iProver_def) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_1461,c_114]) ).

cnf(c_1841,plain,
    double_divide(multiply(X0,X1),sP1_iProver_def) = double_divide(X1,X0),
    inference(light_normalisation,[status(thm)],[c_1828,c_1115]) ).

cnf(c_2196,plain,
    double_divide(a2,sP1_iProver_def) = double_divide(sP1_iProver_def,sP2_iProver_def),
    inference(superposition,[status(thm)],[c_69,c_1040]) ).

cnf(c_2293,plain,
    inverse(double_divide(sP1_iProver_def,sP2_iProver_def)) = multiply(sP1_iProver_def,a2),
    inference(superposition,[status(thm)],[c_2196,c_50]) ).

cnf(c_2303,plain,
    inverse(double_divide(sP1_iProver_def,sP2_iProver_def)) = sP2_iProver_def,
    inference(light_normalisation,[status(thm)],[c_2293,c_69]) ).

cnf(c_2322,plain,
    multiply(sP2_iProver_def,sP1_iProver_def) = sP2_iProver_def,
    inference(demodulation,[status(thm)],[c_2303,c_50]) ).

cnf(c_2359,plain,
    double_divide(X0,inverse(X0)) = sP1_iProver_def,
    inference(demodulation,[status(thm)],[c_1467,c_1841]) ).

cnf(c_2378,plain,
    multiply(inverse(a2),multiply(sP2_iProver_def,sP1_iProver_def)) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_2359,c_368]) ).

cnf(c_2381,plain,
    multiply(inverse(X0),X0) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_2359,c_616]) ).

cnf(c_2385,plain,
    multiply(inverse(a2),sP2_iProver_def) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_2378,c_2322]) ).

cnf(c_2453,plain,
    double_divide(multiply(sP1_iProver_def,double_divide(X0,X1)),X1) = X0,
    inference(superposition,[status(thm)],[c_2381,c_60]) ).

cnf(c_2487,plain,
    double_divide(sP2_iProver_def,inverse(a2)) = double_divide(sP1_iProver_def,sP1_iProver_def),
    inference(superposition,[status(thm)],[c_2385,c_1040]) ).

cnf(c_2489,plain,
    double_divide(sP2_iProver_def,inverse(a2)) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_2487,c_1461]) ).

cnf(c_3145,plain,
    double_divide(multiply(sP1_iProver_def,sP1_iProver_def),inverse(a2)) = sP2_iProver_def,
    inference(superposition,[status(thm)],[c_2489,c_2453]) ).

cnf(c_3159,plain,
    double_divide(sP1_iProver_def,inverse(a2)) = sP2_iProver_def,
    inference(light_normalisation,[status(thm)],[c_3145,c_1460]) ).

cnf(c_3283,plain,
    a2 = sP2_iProver_def,
    inference(demodulation,[status(thm)],[c_3159,c_988]) ).

cnf(c_3288,plain,
    sP2_iProver_def != sP2_iProver_def,
    inference(demodulation,[status(thm)],[c_70,c_3283]) ).

cnf(c_3289,plain,
    $false,
    inference(equality_resolution_simp,[status(thm)],[c_3288]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP590-1 : TPTP v8.1.2. Released v2.6.0.
% 0.07/0.13  % Command  : run_iprover %s %d THM
% 0.14/0.35  % Computer : n016.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Fri May  3 00:25:15 EDT 2024
% 0.14/0.35  % CPUTime  : 
% 0.21/0.48  Running UEQ theorem proving
% 0.21/0.48  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule casc_24_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 3.64/1.16  % SZS status Started for theBenchmark.p
% 3.64/1.16  % SZS status Unsatisfiable for theBenchmark.p
% 3.64/1.16  
% 3.64/1.16  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.64/1.16  
% 3.64/1.16  ------  iProver source info
% 3.64/1.16  
% 3.64/1.16  git: date: 2024-05-02 19:28:25 +0000
% 3.64/1.16  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 3.64/1.16  git: non_committed_changes: false
% 3.64/1.16  
% 3.64/1.16  ------ Parsing...successful
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  ------ Preprocessing... sup_sim: 1  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.64/1.16  
% 3.64/1.16  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.64/1.16  
% 3.64/1.16  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.64/1.16  ------ Proving...
% 3.64/1.16  ------ Problem Properties 
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  clauses                                 6
% 3.64/1.16  conjectures                             1
% 3.64/1.16  EPR                                     1
% 3.64/1.16  Horn                                    6
% 3.64/1.16  unary                                   6
% 3.64/1.16  binary                                  0
% 3.64/1.16  lits                                    6
% 3.64/1.16  lits eq                                 6
% 3.64/1.16  fd_pure                                 0
% 3.64/1.16  fd_pseudo                               0
% 3.64/1.16  fd_cond                                 0
% 3.64/1.16  fd_pseudo_cond                          0
% 3.64/1.16  AC symbols                              0
% 3.64/1.16  
% 3.64/1.16  ------ Input Options Time Limit: Unbounded
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  ------ 
% 3.64/1.16  Current options:
% 3.64/1.16  ------ 
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  ------ Proving...
% 3.64/1.16  
% 3.64/1.16  
% 3.64/1.16  % SZS status Unsatisfiable for theBenchmark.p
% 3.64/1.16  
% 3.64/1.16  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.64/1.16  
% 3.64/1.16  
%------------------------------------------------------------------------------