TSTP Solution File: GRP588-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP588-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:18 EDT 2022

% Result   : Unsatisfiable 1.68s 1.90s
% Output   : Refutation 1.68s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   36 (  36 unt;   0 nHn;   3 RR)
%            Number of literals    :   36 (  35 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   83 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(a,b) != multiply(b,a),
    file('GRP588-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(b,a) != multiply(a,b),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B))) = C,
    file('GRP588-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP588-1.p',unknown),
    [] ).

cnf(8,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    double_divide(A,multiply(B,multiply(inverse(C),double_divide(A,B)))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),8,8]),
    [iquote('back_demod,4,demod,8,8')] ).

cnf(11,plain,
    double_divide(A,multiply(B,multiply(multiply(C,D),double_divide(A,B)))) = double_divide(D,C),
    inference(para_into,[status(thm),theory(equality)],[9,8]),
    [iquote('para_into,9.1.1.2.2.1,7.1.1')] ).

cnf(13,plain,
    double_divide(A,multiply(multiply(B,multiply(inverse(C),double_divide(A,B))),multiply(inverse(D),C))) = D,
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.2.2.2,9.1.1')] ).

cnf(15,plain,
    multiply(multiply(A,multiply(inverse(B),double_divide(C,A))),C) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[9,8])]),
    [iquote('para_from,9.1.1,7.1.1.1,flip.1')] ).

cnf(37,plain,
    double_divide(multiply(inverse(A),B),inverse(B)) = A,
    inference(para_into,[status(thm),theory(equality)],[13,15]),
    [iquote('para_into,13.1.1.2,15.1.1')] ).

cnf(55,plain,
    multiply(inverse(A),multiply(inverse(B),A)) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[37,8])]),
    [iquote('para_from,37.1.1,7.1.1.1,flip.1')] ).

cnf(61,plain,
    multiply(inverse(multiply(inverse(A),B)),inverse(A)) = inverse(B),
    inference(para_into,[status(thm),theory(equality)],[55,55]),
    [iquote('para_into,55.1.1.2,55.1.1')] ).

cnf(63,plain,
    double_divide(inverse(A),inverse(multiply(inverse(A),B))) = B,
    inference(para_from,[status(thm),theory(equality)],[55,37]),
    [iquote('para_from,55.1.1,37.1.1.1')] ).

cnf(69,plain,
    double_divide(inverse(A),inverse(inverse(B))) = multiply(inverse(B),A),
    inference(para_into,[status(thm),theory(equality)],[63,55]),
    [iquote('para_into,63.1.1.2.1,55.1.1')] ).

cnf(70,plain,
    multiply(inverse(A),B) = double_divide(inverse(B),inverse(inverse(A))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[69])]),
    [iquote('copy,69,flip.1')] ).

cnf(84,plain,
    inverse(multiply(inverse(A),B)) = multiply(inverse(inverse(A)),inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[61,55])]),
    [iquote('para_into,61.1.1.1.1,55.1.1,flip.1')] ).

cnf(95,plain,
    double_divide(inverse(A),multiply(inverse(inverse(A)),inverse(B))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[63]),84]),
    [iquote('back_demod,63,demod,84')] ).

cnf(127,plain,
    multiply(inverse(A),double_divide(inverse(A),inverse(inverse(B)))) = inverse(B),
    inference(para_from,[status(thm),theory(equality)],[70,55]),
    [iquote('para_from,70.1.1,55.1.1.2')] ).

cnf(141,plain,
    double_divide(A,double_divide(inverse(multiply(multiply(B,C),double_divide(A,inverse(D)))),inverse(inverse(D)))) = double_divide(C,B),
    inference(para_from,[status(thm),theory(equality)],[70,11]),
    [iquote('para_from,70.1.1,11.1.1.2')] ).

cnf(147,plain,
    double_divide(A,double_divide(multiply(inverse(inverse(B)),multiply(inverse(C),A)),inverse(inverse(C)))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[70,9]),84,8]),
    [iquote('para_from,70.1.1,9.1.1.2,demod,84,8')] ).

cnf(330,plain,
    inverse(multiply(multiply(A,B),C)) = multiply(inverse(multiply(A,B)),inverse(C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[84,8]),8]),
    [iquote('para_into,83.1.1.1.1,7.1.1,demod,8')] ).

cnf(353,plain,
    double_divide(A,double_divide(multiply(inverse(multiply(B,C)),multiply(inverse(D),A)),inverse(inverse(D)))) = double_divide(C,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[141]),330,8]),
    [iquote('back_demod,141,demod,330,8')] ).

cnf(395,plain,
    multiply(multiply(inverse(inverse(A)),inverse(A)),inverse(B)) = inverse(B),
    inference(para_from,[status(thm),theory(equality)],[127,15]),
    [iquote('para_from,127.1.1,15.1.1.1.2')] ).

cnf(397,plain,
    double_divide(inverse(A),multiply(multiply(inverse(inverse(B)),inverse(B)),multiply(inverse(C),A))) = C,
    inference(para_from,[status(thm),theory(equality)],[127,13]),
    [iquote('para_from,127.1.1,13.1.1.2.1.2')] ).

cnf(478,plain,
    multiply(multiply(inverse(inverse(A)),inverse(A)),multiply(B,C)) = multiply(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[395,8]),8]),
    [iquote('para_into,395.1.1.2,7.1.1,demod,8')] ).

cnf(491,plain,
    double_divide(inverse(A),multiply(inverse(B),A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[397]),478]),
    [iquote('back_demod,397,demod,478')] ).

cnf(508,plain,
    inverse(inverse(A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[491,95])]),
    [iquote('para_into,491.1.1,95.1.1,flip.1')] ).

cnf(573,plain,
    double_divide(A,double_divide(multiply(inverse(multiply(B,C)),multiply(inverse(D),A)),D)) = double_divide(C,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[353]),508]),
    [iquote('back_demod,353,demod,508')] ).

cnf(638,plain,
    double_divide(A,double_divide(multiply(B,multiply(inverse(C),A)),C)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[147]),508,508]),
    [iquote('back_demod,147,demod,508,508')] ).

cnf(691,plain,
    inverse(multiply(A,B)) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[573]),638]),
    [iquote('back_demod,573,demod,638')] ).

cnf(784,plain,
    multiply(inverse(A),multiply(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[508,55]),508]),
    [iquote('para_from,507.1.1,55.1.1.2.1,demod,508')] ).

cnf(844,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[784,491]),691]),
    [iquote('para_from,784.1.1,491.1.1.2,demod,691')] ).

cnf(849,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[784,37]),691]),
    [iquote('para_from,784.1.1,37.1.1.1,demod,691')] ).

cnf(895,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[849,844]),
    [iquote('para_into,849.1.1.2,844.1.1')] ).

cnf(1195,plain,
    multiply(A,B) = multiply(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[895,8]),8]),
    [iquote('para_from,895.1.1,7.1.1.1,demod,8')] ).

cnf(1196,plain,
    $false,
    inference(binary,[status(thm)],[1195,2]),
    [iquote('binary,1195.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP588-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n014.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:17:39 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 1.68/1.90  ----- Otter 3.3f, August 2004 -----
% 1.68/1.90  The process was started by sandbox on n014.cluster.edu,
% 1.68/1.90  Wed Jul 27 05:17:39 2022
% 1.68/1.90  The command was "./otter".  The process ID is 25680.
% 1.68/1.90  
% 1.68/1.90  set(prolog_style_variables).
% 1.68/1.90  set(auto).
% 1.68/1.90     dependent: set(auto1).
% 1.68/1.90     dependent: set(process_input).
% 1.68/1.90     dependent: clear(print_kept).
% 1.68/1.90     dependent: clear(print_new_demod).
% 1.68/1.90     dependent: clear(print_back_demod).
% 1.68/1.90     dependent: clear(print_back_sub).
% 1.68/1.90     dependent: set(control_memory).
% 1.68/1.90     dependent: assign(max_mem, 12000).
% 1.68/1.90     dependent: assign(pick_given_ratio, 4).
% 1.68/1.90     dependent: assign(stats_level, 1).
% 1.68/1.90     dependent: assign(max_seconds, 10800).
% 1.68/1.90  clear(print_given).
% 1.68/1.90  
% 1.68/1.90  list(usable).
% 1.68/1.90  0 [] A=A.
% 1.68/1.90  0 [] double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B)))=C.
% 1.68/1.90  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.68/1.90  0 [] multiply(a,b)!=multiply(b,a).
% 1.68/1.90  end_of_list.
% 1.68/1.90  
% 1.68/1.90  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.68/1.90  
% 1.68/1.90  All clauses are units, and equality is present; the
% 1.68/1.90  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.68/1.90  
% 1.68/1.90     dependent: set(knuth_bendix).
% 1.68/1.90     dependent: set(anl_eq).
% 1.68/1.90     dependent: set(para_from).
% 1.68/1.90     dependent: set(para_into).
% 1.68/1.90     dependent: clear(para_from_right).
% 1.68/1.90     dependent: clear(para_into_right).
% 1.68/1.90     dependent: set(para_from_vars).
% 1.68/1.90     dependent: set(eq_units_both_ways).
% 1.68/1.90     dependent: set(dynamic_demod_all).
% 1.68/1.90     dependent: set(dynamic_demod).
% 1.68/1.90     dependent: set(order_eq).
% 1.68/1.90     dependent: set(back_demod).
% 1.68/1.90     dependent: set(lrpo).
% 1.68/1.90  
% 1.68/1.90  ------------> process usable:
% 1.68/1.90  ** KEPT (pick-wt=7): 2 [copy,1,flip.1] multiply(b,a)!=multiply(a,b).
% 1.68/1.90  
% 1.68/1.90  ------------> process sos:
% 1.68/1.90  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.68/1.90  ** KEPT (pick-wt=14): 4 [] double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B)))=C.
% 1.68/1.90  ---> New Demodulator: 5 [new_demod,4] double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B)))=C.
% 1.68/1.90  ** KEPT (pick-wt=8): 7 [copy,6,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.68/1.90  ---> New Demodulator: 8 [new_demod,7] inverse(double_divide(A,B))=multiply(B,A).
% 1.68/1.90    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.68/1.90  >>>> Starting back demodulation with 5.
% 1.68/1.90  >>>> Starting back demodulation with 8.
% 1.68/1.90      >> back demodulating 4 with 8.
% 1.68/1.90  >>>> Starting back demodulation with 10.
% 1.68/1.90  
% 1.68/1.90  ======= end of input processing =======
% 1.68/1.90  
% 1.68/1.90  =========== start of search ===========
% 1.68/1.90  
% 1.68/1.90  -------- PROOF -------- 
% 1.68/1.90  
% 1.68/1.90  ----> UNIT CONFLICT at   0.02 sec ----> 1196 [binary,1195.1,2.1] $F.
% 1.68/1.90  
% 1.68/1.90  Length of proof is 32.  Level of proof is 18.
% 1.68/1.90  
% 1.68/1.90  ---------------- PROOF ----------------
% 1.68/1.90  % SZS status Unsatisfiable
% 1.68/1.90  % SZS output start Refutation
% See solution above
% 1.68/1.90  ------------ end of proof -------------
% 1.68/1.90  
% 1.68/1.90  
% 1.68/1.90  Search stopped by max_proofs option.
% 1.68/1.90  
% 1.68/1.90  
% 1.68/1.90  Search stopped by max_proofs option.
% 1.68/1.90  
% 1.68/1.90  ============ end of search ============
% 1.68/1.90  
% 1.68/1.90  -------------- statistics -------------
% 1.68/1.90  clauses given                 37
% 1.68/1.90  clauses generated            645
% 1.68/1.90  clauses kept                 696
% 1.68/1.90  clauses forward subsumed     584
% 1.68/1.90  clauses back subsumed         16
% 1.68/1.90  Kbytes malloced             3906
% 1.68/1.90  
% 1.68/1.90  ----------- times (seconds) -----------
% 1.68/1.90  user CPU time          0.02          (0 hr, 0 min, 0 sec)
% 1.68/1.90  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.68/1.90  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.68/1.90  
% 1.68/1.90  That finishes the proof of the theorem.
% 1.68/1.90  
% 1.68/1.90  Process 25680 finished Wed Jul 27 05:17:40 2022
% 1.68/1.90  Otter interrupted
% 1.68/1.90  PROOF FOUND
%------------------------------------------------------------------------------