TSTP Solution File: GRP587-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP587-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:21:42 EDT 2023

% Result   : Unsatisfiable 0.52s 0.69s
% Output   : CNFRefutation 0.52s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   23
%            Number of leaves      :    9
% Syntax   : Number of formulae    :   45 (  39 unt;   6 typ;   0 def)
%            Number of atoms       :   39 (  38 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    5 (   5   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :    9 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   79 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    double_divide: ( $i * $i ) > $i ).

tff(decl_23,type,
    inverse: $i > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    a3: $i ).

tff(decl_26,type,
    b3: $i ).

tff(decl_27,type,
    c3: $i ).

cnf(single_axiom,axiom,
    double_divide(X1,inverse(double_divide(inverse(double_divide(double_divide(X1,X2),inverse(X3))),X2))) = X3,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_3,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_3) ).

cnf(multiply,axiom,
    multiply(X1,X2) = inverse(double_divide(X2,X1)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_0_3,axiom,
    double_divide(X1,inverse(double_divide(inverse(double_divide(double_divide(X1,X2),inverse(X3))),X2))) = X3,
    single_axiom ).

cnf(c_0_4,plain,
    double_divide(X1,inverse(double_divide(inverse(double_divide(X2,inverse(X3))),inverse(double_divide(inverse(double_divide(double_divide(X1,X4),inverse(X2))),X4))))) = X3,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_5,plain,
    double_divide(inverse(double_divide(X1,inverse(X2))),inverse(X1)) = X2,
    inference(spm,[status(thm)],[c_0_4,c_0_3]) ).

cnf(c_0_6,plain,
    double_divide(inverse(X1),inverse(inverse(double_divide(X2,inverse(X1))))) = X2,
    inference(spm,[status(thm)],[c_0_5,c_0_5]) ).

cnf(c_0_7,plain,
    double_divide(inverse(X1),inverse(inverse(X2))) = inverse(double_divide(X1,inverse(X2))),
    inference(spm,[status(thm)],[c_0_5,c_0_6]) ).

cnf(c_0_8,plain,
    inverse(double_divide(X1,inverse(double_divide(X2,inverse(X1))))) = X2,
    inference(rw,[status(thm)],[c_0_6,c_0_7]) ).

cnf(c_0_9,plain,
    inverse(double_divide(double_divide(X1,inverse(X2)),X1)) = X2,
    inference(spm,[status(thm)],[c_0_8,c_0_8]) ).

cnf(c_0_10,plain,
    double_divide(inverse(X1),inverse(X2)) = inverse(double_divide(X1,X2)),
    inference(spm,[status(thm)],[c_0_7,c_0_8]) ).

cnf(c_0_11,plain,
    inverse(double_divide(X1,double_divide(X2,inverse(X2)))) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_3,c_0_9]),c_0_10]) ).

cnf(c_0_12,plain,
    double_divide(double_divide(X1,inverse(X1)),inverse(X2)) = X2,
    inference(spm,[status(thm)],[c_0_9,c_0_11]) ).

cnf(c_0_13,plain,
    inverse(double_divide(X1,inverse(X1))) = double_divide(X2,inverse(X2)),
    inference(spm,[status(thm)],[c_0_8,c_0_12]) ).

cnf(c_0_14,plain,
    double_divide(inverse(double_divide(double_divide(double_divide(X1,X2),X3),inverse(X4))),X3) = double_divide(X1,inverse(double_divide(inverse(X4),X2))),
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_15,plain,
    double_divide(inverse(X1),double_divide(X2,inverse(X2))) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10,c_0_13]),c_0_11]) ).

cnf(c_0_16,plain,
    double_divide(X1,inverse(inverse(double_divide(X2,X1)))) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_3,c_0_12]),c_0_14]),c_0_10]) ).

cnf(c_0_17,plain,
    inverse(double_divide(X1,double_divide(X1,inverse(X2)))) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_3,c_0_15]),c_0_15]),c_0_10]) ).

cnf(c_0_18,plain,
    double_divide(double_divide(X1,inverse(X2)),inverse(X2)) = X1,
    inference(spm,[status(thm)],[c_0_16,c_0_17]) ).

cnf(c_0_19,plain,
    inverse(double_divide(X1,inverse(X2))) = double_divide(X2,inverse(X1)),
    inference(spm,[status(thm)],[c_0_8,c_0_18]) ).

cnf(c_0_20,plain,
    inverse(inverse(X1)) = X1,
    inference(spm,[status(thm)],[c_0_9,c_0_18]) ).

cnf(c_0_21,plain,
    double_divide(X1,X2) = double_divide(X2,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_19,c_0_10]),c_0_20]),c_0_20]) ).

cnf(c_0_22,plain,
    inverse(double_divide(inverse(X1),X2)) = double_divide(X1,inverse(X2)),
    inference(spm,[status(thm)],[c_0_10,c_0_20]) ).

cnf(c_0_23,plain,
    double_divide(double_divide(X1,inverse(X1)),X2) = inverse(X2),
    inference(spm,[status(thm)],[c_0_12,c_0_20]) ).

cnf(c_0_24,plain,
    double_divide(X1,double_divide(X2,inverse(double_divide(double_divide(X3,X4),X1)))) = double_divide(X3,double_divide(X2,inverse(X4))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_14,c_0_19]),c_0_21]),c_0_22]) ).

cnf(c_0_25,plain,
    double_divide(X1,double_divide(X2,inverse(X2))) = inverse(X1),
    inference(spm,[status(thm)],[c_0_15,c_0_20]) ).

cnf(c_0_26,plain,
    inverse(double_divide(X1,double_divide(X2,X3))) = double_divide(X2,double_divide(X1,inverse(X3))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_25]),c_0_20]) ).

cnf(c_0_27,plain,
    double_divide(inverse(X1),double_divide(X2,inverse(X3))) = double_divide(X3,double_divide(X1,X2)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10,c_0_19]),c_0_26]),c_0_20]) ).

cnf(c_0_28,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    prove_these_axioms_3 ).

cnf(c_0_29,axiom,
    multiply(X1,X2) = inverse(double_divide(X2,X1)),
    multiply ).

cnf(c_0_30,plain,
    double_divide(double_divide(X1,inverse(X2)),inverse(X3)) = double_divide(X2,double_divide(X3,X1)),
    inference(spm,[status(thm)],[c_0_21,c_0_27]) ).

cnf(c_0_31,negated_conjecture,
    inverse(double_divide(c3,inverse(double_divide(b3,a3)))) != inverse(double_divide(inverse(double_divide(c3,b3)),a3)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_28,c_0_29]),c_0_29]),c_0_29]),c_0_29]) ).

cnf(c_0_32,plain,
    double_divide(double_divide(X1,inverse(X2)),X3) = double_divide(X2,double_divide(inverse(X3),X1)),
    inference(spm,[status(thm)],[c_0_30,c_0_20]) ).

cnf(c_0_33,negated_conjecture,
    inverse(double_divide(inverse(double_divide(c3,b3)),a3)) != double_divide(double_divide(b3,a3),inverse(c3)),
    inference(rw,[status(thm)],[c_0_31,c_0_19]) ).

cnf(c_0_34,plain,
    double_divide(X1,inverse(X2)) = double_divide(inverse(X2),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10,c_0_20]),c_0_19]) ).

cnf(c_0_35,plain,
    double_divide(inverse(double_divide(X1,X2)),X3) = double_divide(X2,inverse(double_divide(X3,X1))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_10]),c_0_10]) ).

cnf(c_0_36,negated_conjecture,
    double_divide(double_divide(b3,a3),inverse(c3)) != double_divide(double_divide(c3,b3),inverse(a3)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_33,c_0_34]),c_0_19]) ).

cnf(c_0_37,plain,
    double_divide(double_divide(X1,X2),inverse(X3)) = double_divide(double_divide(X2,X3),inverse(X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_35]),c_0_19]) ).

cnf(c_0_38,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_36,c_0_37])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.05/0.11  % Problem    : GRP587-1 : TPTP v8.1.2. Released v2.6.0.
% 0.05/0.12  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.11/0.32  % Computer : n024.cluster.edu
% 0.11/0.32  % Model    : x86_64 x86_64
% 0.11/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.32  % Memory   : 8042.1875MB
% 0.11/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.32  % CPULimit   : 300
% 0.11/0.32  % WCLimit    : 300
% 0.11/0.32  % DateTime   : Tue Aug 29 01:24:38 EDT 2023
% 0.11/0.33  % CPUTime  : 
% 0.17/0.57  start to proof: theBenchmark
% 0.52/0.69  % Version  : CSE_E---1.5
% 0.52/0.69  % Problem  : theBenchmark.p
% 0.52/0.69  % Proof found
% 0.52/0.69  % SZS status Theorem for theBenchmark.p
% 0.52/0.69  % SZS output start Proof
% See solution above
% 0.52/0.69  % Total time : 0.112000 s
% 0.52/0.69  % SZS output end Proof
% 0.52/0.69  % Total time : 0.114000 s
%------------------------------------------------------------------------------