TSTP Solution File: GRP586-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP586-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:18 EDT 2022

% Result   : Unsatisfiable 1.76s 1.94s
% Output   : Refutation 1.76s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   21
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   43 (  43 unt;   0 nHn;   3 RR)
%            Number of literals    :   43 (  42 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  104 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP586-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP586-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B))) = C,
    file('GRP586-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP586-1.p',unknown),
    [] ).

cnf(7,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(8,plain,
    double_divide(A,multiply(B,multiply(inverse(C),double_divide(A,B)))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3]),7,7]),
    [iquote('back_demod,3,demod,7,7')] ).

cnf(10,plain,
    double_divide(A,multiply(B,multiply(multiply(C,D),double_divide(A,B)))) = double_divide(D,C),
    inference(para_into,[status(thm),theory(equality)],[8,7]),
    [iquote('para_into,8.1.1.2.2.1,6.1.1')] ).

cnf(12,plain,
    double_divide(A,multiply(multiply(B,multiply(inverse(C),double_divide(A,B))),multiply(inverse(D),C))) = D,
    inference(para_into,[status(thm),theory(equality)],[8,8]),
    [iquote('para_into,8.1.1.2.2.2,8.1.1')] ).

cnf(14,plain,
    multiply(multiply(A,multiply(inverse(B),double_divide(C,A))),C) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[8,7])]),
    [iquote('para_from,8.1.1,6.1.1.1,flip.1')] ).

cnf(16,plain,
    multiply(multiply(A,multiply(multiply(B,C),double_divide(D,A))),D) = multiply(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,7]),7]),
    [iquote('para_into,14.1.1.1.2.1,6.1.1,demod,7')] ).

cnf(36,plain,
    double_divide(multiply(inverse(A),B),inverse(B)) = A,
    inference(para_into,[status(thm),theory(equality)],[12,14]),
    [iquote('para_into,12.1.1.2,14.1.1')] ).

cnf(54,plain,
    multiply(inverse(A),multiply(inverse(B),A)) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[36,7])]),
    [iquote('para_from,36.1.1,6.1.1.1,flip.1')] ).

cnf(60,plain,
    multiply(inverse(multiply(inverse(A),B)),inverse(A)) = inverse(B),
    inference(para_into,[status(thm),theory(equality)],[54,54]),
    [iquote('para_into,54.1.1.2,54.1.1')] ).

cnf(62,plain,
    double_divide(inverse(A),inverse(multiply(inverse(A),B))) = B,
    inference(para_from,[status(thm),theory(equality)],[54,36]),
    [iquote('para_from,54.1.1,36.1.1.1')] ).

cnf(68,plain,
    double_divide(inverse(A),inverse(inverse(B))) = multiply(inverse(B),A),
    inference(para_into,[status(thm),theory(equality)],[62,54]),
    [iquote('para_into,62.1.1.2.1,54.1.1')] ).

cnf(69,plain,
    multiply(inverse(A),B) = double_divide(inverse(B),inverse(inverse(A))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[68])]),
    [iquote('copy,68,flip.1')] ).

cnf(83,plain,
    inverse(multiply(inverse(A),B)) = multiply(inverse(inverse(A)),inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[60,54])]),
    [iquote('para_into,60.1.1.1.1,54.1.1,flip.1')] ).

cnf(94,plain,
    double_divide(inverse(A),multiply(inverse(inverse(A)),inverse(B))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[62]),83]),
    [iquote('back_demod,62,demod,83')] ).

cnf(107,plain,
    multiply(multiply(A,inverse(B)),C) = multiply(D,multiply(inverse(B),double_divide(double_divide(C,A),D))),
    inference(para_into,[status(thm),theory(equality)],[16,14]),
    [iquote('para_into,16.1.1.1.2,14.1.1')] ).

cnf(109,plain,
    multiply(A,multiply(inverse(B),double_divide(double_divide(C,D),A))) = multiply(multiply(D,inverse(B)),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[107])]),
    [iquote('copy,107,flip.1')] ).

cnf(126,plain,
    multiply(inverse(A),double_divide(inverse(A),inverse(inverse(B)))) = inverse(B),
    inference(para_from,[status(thm),theory(equality)],[69,54]),
    [iquote('para_from,69.1.1,54.1.1.2')] ).

cnf(140,plain,
    double_divide(A,double_divide(inverse(multiply(multiply(B,C),double_divide(A,inverse(D)))),inverse(inverse(D)))) = double_divide(C,B),
    inference(para_from,[status(thm),theory(equality)],[69,10]),
    [iquote('para_from,69.1.1,10.1.1.2')] ).

cnf(146,plain,
    double_divide(A,double_divide(multiply(inverse(inverse(B)),multiply(inverse(C),A)),inverse(inverse(C)))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[69,8]),83,7]),
    [iquote('para_from,69.1.1,8.1.1.2,demod,83,7')] ).

cnf(330,plain,
    inverse(multiply(multiply(A,B),C)) = multiply(inverse(multiply(A,B)),inverse(C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,7]),7]),
    [iquote('para_into,82.1.1.1.1,6.1.1,demod,7')] ).

cnf(353,plain,
    double_divide(A,double_divide(multiply(inverse(multiply(B,C)),multiply(inverse(D),A)),inverse(inverse(D)))) = double_divide(C,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[140]),330,7]),
    [iquote('back_demod,140,demod,330,7')] ).

cnf(395,plain,
    multiply(multiply(inverse(inverse(A)),inverse(A)),inverse(B)) = inverse(B),
    inference(para_from,[status(thm),theory(equality)],[126,14]),
    [iquote('para_from,126.1.1,14.1.1.1.2')] ).

cnf(397,plain,
    double_divide(inverse(A),multiply(multiply(inverse(inverse(B)),inverse(B)),multiply(inverse(C),A))) = C,
    inference(para_from,[status(thm),theory(equality)],[126,12]),
    [iquote('para_from,126.1.1,12.1.1.2.1.2')] ).

cnf(478,plain,
    multiply(multiply(inverse(inverse(A)),inverse(A)),multiply(B,C)) = multiply(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[395,7]),7]),
    [iquote('para_into,395.1.1.2,6.1.1,demod,7')] ).

cnf(491,plain,
    double_divide(inverse(A),multiply(inverse(B),A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[397]),478]),
    [iquote('back_demod,397,demod,478')] ).

cnf(508,plain,
    inverse(inverse(A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[491,94])]),
    [iquote('para_into,491.1.1,94.1.1,flip.1')] ).

cnf(573,plain,
    double_divide(A,double_divide(multiply(inverse(multiply(B,C)),multiply(inverse(D),A)),D)) = double_divide(C,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[353]),508]),
    [iquote('back_demod,353,demod,508')] ).

cnf(639,plain,
    double_divide(A,double_divide(multiply(B,multiply(inverse(C),A)),C)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[146]),508,508]),
    [iquote('back_demod,146,demod,508,508')] ).

cnf(692,plain,
    inverse(multiply(A,B)) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[573]),639]),
    [iquote('back_demod,573,demod,639')] ).

cnf(785,plain,
    multiply(inverse(A),multiply(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[508,54]),508]),
    [iquote('para_from,507.1.1,54.1.1.2.1,demod,508')] ).

cnf(843,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[785,491]),692]),
    [iquote('para_from,785.1.1,491.1.1.2,demod,692')] ).

cnf(849,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[785,36]),692]),
    [iquote('para_from,785.1.1,36.1.1.1,demod,692')] ).

cnf(918,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[849,849]),
    [iquote('para_into,848.1.1.2,848.1.1')] ).

cnf(920,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[849,843]),
    [iquote('para_into,848.1.1.2,843.1.1')] ).

cnf(954,plain,
    multiply(A,multiply(inverse(B),double_divide(C,A))) = double_divide(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[918,8])]),
    [iquote('para_into,918.1.1.1,8.1.1,flip.1')] ).

cnf(1054,plain,
    multiply(multiply(A,inverse(B)),C) = double_divide(B,double_divide(C,A)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[109]),954])]),
    [iquote('back_demod,109,demod,954,flip.1')] ).

cnf(1224,plain,
    multiply(A,B) = multiply(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[920,7]),7]),
    [iquote('para_from,920.1.1,6.1.1.1,demod,7')] ).

cnf(1258,plain,
    a2 != a2,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1224,1]),1054,849]),
    [iquote('para_from,1224.1.1,1.1.1.1,demod,1054,849')] ).

cnf(1259,plain,
    $false,
    inference(binary,[status(thm)],[1258,2]),
    [iquote('binary,1258.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP586-1 : TPTP v8.1.0. Released v2.6.0.
% 0.10/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n014.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:18:39 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 1.76/1.94  ----- Otter 3.3f, August 2004 -----
% 1.76/1.94  The process was started by sandbox on n014.cluster.edu,
% 1.76/1.94  Wed Jul 27 05:18:39 2022
% 1.76/1.94  The command was "./otter".  The process ID is 29229.
% 1.76/1.94  
% 1.76/1.94  set(prolog_style_variables).
% 1.76/1.94  set(auto).
% 1.76/1.94     dependent: set(auto1).
% 1.76/1.94     dependent: set(process_input).
% 1.76/1.94     dependent: clear(print_kept).
% 1.76/1.94     dependent: clear(print_new_demod).
% 1.76/1.94     dependent: clear(print_back_demod).
% 1.76/1.94     dependent: clear(print_back_sub).
% 1.76/1.94     dependent: set(control_memory).
% 1.76/1.94     dependent: assign(max_mem, 12000).
% 1.76/1.94     dependent: assign(pick_given_ratio, 4).
% 1.76/1.94     dependent: assign(stats_level, 1).
% 1.76/1.94     dependent: assign(max_seconds, 10800).
% 1.76/1.94  clear(print_given).
% 1.76/1.94  
% 1.76/1.94  list(usable).
% 1.76/1.94  0 [] A=A.
% 1.76/1.94  0 [] double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B)))=C.
% 1.76/1.94  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.76/1.94  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.76/1.94  end_of_list.
% 1.76/1.94  
% 1.76/1.94  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.76/1.94  
% 1.76/1.94  All clauses are units, and equality is present; the
% 1.76/1.94  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.76/1.94  
% 1.76/1.94     dependent: set(knuth_bendix).
% 1.76/1.94     dependent: set(anl_eq).
% 1.76/1.94     dependent: set(para_from).
% 1.76/1.94     dependent: set(para_into).
% 1.76/1.94     dependent: clear(para_from_right).
% 1.76/1.94     dependent: clear(para_into_right).
% 1.76/1.94     dependent: set(para_from_vars).
% 1.76/1.94     dependent: set(eq_units_both_ways).
% 1.76/1.94     dependent: set(dynamic_demod_all).
% 1.76/1.94     dependent: set(dynamic_demod).
% 1.76/1.94     dependent: set(order_eq).
% 1.76/1.94     dependent: set(back_demod).
% 1.76/1.94     dependent: set(lrpo).
% 1.76/1.94  
% 1.76/1.94  ------------> process usable:
% 1.76/1.94  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.76/1.94  
% 1.76/1.94  ------------> process sos:
% 1.76/1.94  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.76/1.94  ** KEPT (pick-wt=14): 3 [] double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B)))=C.
% 1.76/1.94  ---> New Demodulator: 4 [new_demod,3] double_divide(A,inverse(double_divide(inverse(double_divide(double_divide(A,B),inverse(C))),B)))=C.
% 1.76/1.94  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.76/1.94  ---> New Demodulator: 7 [new_demod,6] inverse(double_divide(A,B))=multiply(B,A).
% 1.76/1.94    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.76/1.94  >>>> Starting back demodulation with 4.
% 1.76/1.94  >>>> Starting back demodulation with 7.
% 1.76/1.94      >> back demodulating 3 with 7.
% 1.76/1.94  >>>> Starting back demodulation with 9.
% 1.76/1.94  
% 1.76/1.94  ======= end of input processing =======
% 1.76/1.94  
% 1.76/1.94  =========== start of search ===========
% 1.76/1.94  
% 1.76/1.94  
% 1.76/1.94  Resetting weight limit to 9.
% 1.76/1.94  
% 1.76/1.94  
% 1.76/1.94  Resetting weight limit to 9.
% 1.76/1.94  
% 1.76/1.94  sos_size=245
% 1.76/1.94  
% 1.76/1.94  -------- PROOF -------- 
% 1.76/1.94  
% 1.76/1.94  ----> UNIT CONFLICT at   0.04 sec ----> 1259 [binary,1258.1,2.1] $F.
% 1.76/1.94  
% 1.76/1.94  Length of proof is 38.  Level of proof is 20.
% 1.76/1.94  
% 1.76/1.94  ---------------- PROOF ----------------
% 1.76/1.94  % SZS status Unsatisfiable
% 1.76/1.94  % SZS output start Refutation
% See solution above
% 1.76/1.94  ------------ end of proof -------------
% 1.76/1.94  
% 1.76/1.94  
% 1.76/1.94  Search stopped by max_proofs option.
% 1.76/1.94  
% 1.76/1.94  
% 1.76/1.94  Search stopped by max_proofs option.
% 1.76/1.94  
% 1.76/1.94  ============ end of search ============
% 1.76/1.94  
% 1.76/1.94  -------------- statistics -------------
% 1.76/1.94  clauses given                 42
% 1.76/1.94  clauses generated            709
% 1.76/1.94  clauses kept                 734
% 1.76/1.94  clauses forward subsumed     636
% 1.76/1.94  clauses back subsumed         14
% 1.76/1.94  Kbytes malloced             4882
% 1.76/1.94  
% 1.76/1.94  ----------- times (seconds) -----------
% 1.76/1.94  user CPU time          0.04          (0 hr, 0 min, 0 sec)
% 1.76/1.94  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.76/1.94  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.76/1.94  
% 1.76/1.94  That finishes the proof of the theorem.
% 1.76/1.94  
% 1.76/1.94  Process 29229 finished Wed Jul 27 05:18:40 2022
% 1.76/1.94  Otter interrupted
% 1.76/1.94  PROOF FOUND
%------------------------------------------------------------------------------