TSTP Solution File: GRP581-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP581-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:44 EDT 2022

% Result   : Unsatisfiable 0.60s 0.96s
% Output   : Refutation 0.60s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : GRP581-1 : TPTP v8.1.0. Released v2.6.0.
% 0.04/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n007.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Mon Jun 13 04:13:53 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.60/0.96  *** allocated 10000 integers for termspace/termends
% 0.60/0.96  *** allocated 10000 integers for clauses
% 0.60/0.96  *** allocated 10000 integers for justifications
% 0.60/0.96  Bliksem 1.12
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  Automatic Strategy Selection
% 0.60/0.96  
% 0.60/0.96  Clauses:
% 0.60/0.96  [
% 0.60/0.96     [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), 'double_divide'( identity, identity ) ), Z ) ],
% 0.60/0.96     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.60/0.96    identity ) ) ],
% 0.60/0.96     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.60/0.96     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.60/0.96     [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ]
% 0.60/0.96  ] .
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  percentage equality = 1.000000, percentage horn = 1.000000
% 0.60/0.96  This is a pure equality problem
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  Options Used:
% 0.60/0.96  
% 0.60/0.96  useres =            1
% 0.60/0.96  useparamod =        1
% 0.60/0.96  useeqrefl =         1
% 0.60/0.96  useeqfact =         1
% 0.60/0.96  usefactor =         1
% 0.60/0.96  usesimpsplitting =  0
% 0.60/0.96  usesimpdemod =      5
% 0.60/0.96  usesimpres =        3
% 0.60/0.96  
% 0.60/0.96  resimpinuse      =  1000
% 0.60/0.96  resimpclauses =     20000
% 0.60/0.96  substype =          eqrewr
% 0.60/0.96  backwardsubs =      1
% 0.60/0.96  selectoldest =      5
% 0.60/0.96  
% 0.60/0.96  litorderings [0] =  split
% 0.60/0.96  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.60/0.96  
% 0.60/0.96  termordering =      kbo
% 0.60/0.96  
% 0.60/0.96  litapriori =        0
% 0.60/0.96  termapriori =       1
% 0.60/0.96  litaposteriori =    0
% 0.60/0.96  termaposteriori =   0
% 0.60/0.96  demodaposteriori =  0
% 0.60/0.96  ordereqreflfact =   0
% 0.60/0.96  
% 0.60/0.96  litselect =         negord
% 0.60/0.96  
% 0.60/0.96  maxweight =         15
% 0.60/0.96  maxdepth =          30000
% 0.60/0.96  maxlength =         115
% 0.60/0.96  maxnrvars =         195
% 0.60/0.96  excuselevel =       1
% 0.60/0.96  increasemaxweight = 1
% 0.60/0.96  
% 0.60/0.96  maxselected =       10000000
% 0.60/0.96  maxnrclauses =      10000000
% 0.60/0.96  
% 0.60/0.96  showgenerated =    0
% 0.60/0.96  showkept =         0
% 0.60/0.96  showselected =     0
% 0.60/0.96  showdeleted =      0
% 0.60/0.96  showresimp =       1
% 0.60/0.96  showstatus =       2000
% 0.60/0.96  
% 0.60/0.96  prologoutput =     1
% 0.60/0.96  nrgoals =          5000000
% 0.60/0.96  totalproof =       1
% 0.60/0.96  
% 0.60/0.96  Symbols occurring in the translation:
% 0.60/0.96  
% 0.60/0.96  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.60/0.96  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.60/0.96  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.60/0.96  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.60/0.96  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.60/0.96  identity  [40, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.60/0.96  'double_divide'  [42, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.60/0.96  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.60/0.96  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.60/0.96  a1  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  Starting Search:
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  Bliksems!, er is een bewijs:
% 0.60/0.96  % SZS status Unsatisfiable
% 0.60/0.96  % SZS output start Refutation
% 0.60/0.96  
% 0.60/0.96  clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), 'double_divide'( identity, identity ) ), Z ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.60/0.96    multiply( X, Y ) ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), inverse( identity ) ), Z ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 15, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), 'double_divide'( Y, 
% 0.60/0.96    inverse( X ) ) ) ), inverse( identity ) ), Y ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 35, [ =( 'double_divide'( 'double_divide'( identity, multiply( X, 
% 0.60/0.96    identity ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 41, [ =( inverse( identity ), identity ) ] )
% 0.60/0.96  .
% 0.60/0.96  clause( 43, [] )
% 0.60/0.96  .
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  % SZS output end Refutation
% 0.60/0.96  found a proof!
% 0.60/0.96  
% 0.60/0.96  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.60/0.96  
% 0.60/0.96  initialclauses(
% 0.60/0.96  [ clause( 45, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), 'double_divide'( identity, identity ) ), Z ) ] )
% 0.60/0.96  , clause( 46, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.60/0.96     ), identity ) ) ] )
% 0.60/0.96  , clause( 47, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.60/0.96  , clause( 48, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.60/0.96  , clause( 49, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.60/0.96  ] ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), 'double_divide'( identity, identity ) ), Z ) ] )
% 0.60/0.96  , clause( 45, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), 'double_divide'( identity, identity ) ), Z ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.60/0.96    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 52, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.60/0.96    multiply( X, Y ) ) ] )
% 0.60/0.96  , clause( 46, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.60/0.96     ), identity ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.60/0.96    multiply( X, Y ) ) ] )
% 0.60/0.96  , clause( 52, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.60/0.96    multiply( X, Y ) ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.60/0.96     )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 55, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , clause( 47, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , clause( 55, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 59, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , clause( 48, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , clause( 59, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.60/0.96  , clause( 49, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.60/0.96  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 67, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.60/0.96     )
% 0.60/0.96  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.60/0.96    multiply( X, Y ) ) ] )
% 0.60/0.96  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.60/0.96    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.60/0.96  , clause( 67, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.60/0.96     )
% 0.60/0.96  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.60/0.96     )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 70, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.60/0.96     )
% 0.60/0.96  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.60/0.96     )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 73, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.60/0.96  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , 0, clause( 70, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.60/0.96     ) ] )
% 0.60/0.96  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.60/0.96    :=( Y, inverse( X ) )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.60/0.96  , clause( 73, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 77, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), inverse( identity ) ), Z ) ] )
% 0.60/0.96  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , 0, clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), 'double_divide'( identity, identity ) ), Z ) ] )
% 0.60/0.96  , 0, 13, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X
% 0.60/0.96    , X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), inverse( identity ) ), Z ) ] )
% 0.60/0.96  , clause( 77, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), inverse( identity ) ), Z ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.60/0.96    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 80, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.60/0.96  , clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 81, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.60/0.96  , 0, clause( 80, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.60/0.96  , 0, 3, substitution( 0, [ :=( X, a1 )] ), substitution( 1, [] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 82, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.60/0.96  , clause( 81, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.60/0.96  , clause( 82, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.60/0.96  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 84, [ =( Z, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, Y ), 'double_divide'( Z, 'double_divide'( Y, X
% 0.60/0.96     ) ) ) ), inverse( identity ) ), Z ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 86, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, Y ), 'double_divide'( X, 
% 0.60/0.96    inverse( Y ) ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , 0, clause( 84, [ =( Z, 'double_divide'( 'double_divide'( X, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, Y ), 'double_divide'( Z, 
% 0.60/0.96    'double_divide'( Y, X ) ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, 11, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, 
% 0.60/0.96    identity ), :=( Y, Y ), :=( Z, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 88, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, Y ), 'double_divide'( X, 
% 0.60/0.96    inverse( Y ) ) ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  , clause( 86, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, Y ), 'double_divide'( X, 
% 0.60/0.96    inverse( Y ) ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 15, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), 'double_divide'( Y, 
% 0.60/0.96    inverse( X ) ) ) ), inverse( identity ) ), Y ) ] )
% 0.60/0.96  , clause( 88, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, Y ), 'double_divide'( X, 
% 0.60/0.96    inverse( Y ) ) ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.60/0.96     )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 90, [ =( Y, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), 'double_divide'( Y, 
% 0.60/0.96    inverse( X ) ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 15, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), 'double_divide'( Y, 
% 0.60/0.96    inverse( X ) ) ) ), inverse( identity ) ), Y ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 94, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), identity ) ), inverse( 
% 0.60/0.96    identity ) ) ) ] )
% 0.60/0.96  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , 0, clause( 90, [ =( Y, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), 'double_divide'( Y, 
% 0.60/0.96    inverse( X ) ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, 9, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.60/0.96    :=( Y, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 95, [ =( X, 'double_divide'( 'double_divide'( identity, inverse( 
% 0.60/0.96    'double_divide'( identity, X ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.60/0.96  , 0, clause( 94, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    'double_divide'( 'double_divide'( identity, X ), identity ) ), inverse( 
% 0.60/0.96    identity ) ) ) ] )
% 0.60/0.96  , 0, 5, substitution( 0, [ :=( X, 'double_divide'( identity, X ) )] ), 
% 0.60/0.96    substitution( 1, [ :=( X, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 96, [ =( X, 'double_divide'( 'double_divide'( identity, multiply( X
% 0.60/0.96    , identity ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.60/0.96     )
% 0.60/0.96  , 0, clause( 95, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    inverse( 'double_divide'( identity, X ) ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, 5, substitution( 0, [ :=( X, X ), :=( Y, identity )] ), substitution( 
% 0.60/0.96    1, [ :=( X, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 97, [ =( 'double_divide'( 'double_divide'( identity, multiply( X, 
% 0.60/0.96    identity ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  , clause( 96, [ =( X, 'double_divide'( 'double_divide'( identity, multiply( 
% 0.60/0.96    X, identity ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 35, [ =( 'double_divide'( 'double_divide'( identity, multiply( X, 
% 0.60/0.96    identity ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  , clause( 97, [ =( 'double_divide'( 'double_divide'( identity, multiply( X
% 0.60/0.96    , identity ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  eqswap(
% 0.60/0.96  clause( 99, [ =( X, 'double_divide'( 'double_divide'( identity, multiply( X
% 0.60/0.96    , identity ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 35, [ =( 'double_divide'( 'double_divide'( identity, multiply( X
% 0.60/0.96    , identity ) ), inverse( identity ) ), X ) ] )
% 0.60/0.96  , 0, substitution( 0, [ :=( X, X )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 102, [ =( inverse( identity ), 'double_divide'( 'double_divide'( 
% 0.60/0.96    identity, inverse( identity ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.60/0.96  , 0, clause( 99, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.60/0.96    multiply( X, identity ) ), inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, 6, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.60/0.96    inverse( identity ) )] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 103, [ =( inverse( identity ), 'double_divide'( identity, inverse( 
% 0.60/0.96    identity ) ) ) ] )
% 0.60/0.96  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , 0, clause( 102, [ =( inverse( identity ), 'double_divide'( 
% 0.60/0.96    'double_divide'( identity, inverse( identity ) ), inverse( identity ) ) )
% 0.60/0.96     ] )
% 0.60/0.96  , 0, 4, substitution( 0, [ :=( X, identity )] ), substitution( 1, [] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  paramod(
% 0.60/0.96  clause( 105, [ =( inverse( identity ), identity ) ] )
% 0.60/0.96  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.60/0.96  , 0, clause( 103, [ =( inverse( identity ), 'double_divide'( identity, 
% 0.60/0.96    inverse( identity ) ) ) ] )
% 0.60/0.96  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 41, [ =( inverse( identity ), identity ) ] )
% 0.60/0.96  , clause( 105, [ =( inverse( identity ), identity ) ] )
% 0.60/0.96  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  resolution(
% 0.60/0.96  clause( 109, [] )
% 0.60/0.96  , clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.60/0.96  , 0, clause( 41, [ =( inverse( identity ), identity ) ] )
% 0.60/0.96  , 0, substitution( 0, [] ), substitution( 1, [] )).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  subsumption(
% 0.60/0.96  clause( 43, [] )
% 0.60/0.96  , clause( 109, [] )
% 0.60/0.96  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  end.
% 0.60/0.96  
% 0.60/0.96  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.60/0.96  
% 0.60/0.96  Memory use:
% 0.60/0.96  
% 0.60/0.96  space for terms:        623
% 0.60/0.96  space for clauses:      5600
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  clauses generated:      182
% 0.60/0.96  clauses kept:           44
% 0.60/0.96  clauses selected:       23
% 0.60/0.96  clauses deleted:        5
% 0.60/0.96  clauses inuse deleted:  0
% 0.60/0.96  
% 0.60/0.96  subsentry:          184
% 0.60/0.96  literals s-matched: 74
% 0.60/0.96  literals matched:   74
% 0.60/0.96  full subsumption:   0
% 0.60/0.96  
% 0.60/0.96  checksum:           1056213747
% 0.60/0.96  
% 0.60/0.96  
% 0.60/0.96  Bliksem ended
%------------------------------------------------------------------------------