TSTP Solution File: GRP575-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP575-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:17 EDT 2022

% Result   : Unsatisfiable 1.75s 1.97s
% Output   : Refutation 1.75s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   59 (  59 unt;   0 nHn;   7 RR)
%            Number of literals    :   59 (  58 equ;   5 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   92 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP575-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))),double_divide(identity,identity)) = B,
    file('GRP575-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP575-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP575-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP575-1.p',unknown),
    [] ).

cnf(10,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6,6,6,6])]),
    [iquote('back_demod,1,demod,6,6,6,6,flip.1')] ).

cnf(13,plain,
    double_divide(double_divide(double_divide(A,identity),double_divide(double_divide(B,identity),double_divide(A,identity))),double_divide(identity,identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.1.2.1.2,10.1.1')] ).

cnf(17,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(identity,identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.1.2.1,10.1.1')] ).

cnf(19,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(B,double_divide(double_divide(A,double_divide(C,B)),double_divide(C,identity))),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2.1,3.1.1')] ).

cnf(20,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))) = double_divide(double_divide(identity,double_divide(B,double_divide(identity,identity))),double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(24,plain,
    double_divide(double_divide(double_divide(A,identity),A),double_divide(identity,identity)) = identity,
    inference(para_from,[status(thm),theory(equality)],[17,3]),
    [iquote('para_from,17.1.1,3.1.1.1.2')] ).

cnf(26,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(para_from,[status(thm),theory(equality)],[17,3]),
    [iquote('para_from,17.1.1,3.1.1.1.2.1')] ).

cnf(29,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))) = double_divide(identity,double_divide(identity,double_divide(B,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[20]),26]),
    [iquote('back_demod,20,demod,26')] ).

cnf(32,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[13,24]),24])]),
    [iquote('para_into,13.1.1.1.2,23.1.1,demod,24,flip.1')] ).

cnf(34,plain,
    double_divide(double_divide(double_divide(double_divide(A,identity),identity),identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[13,10]),32]),
    [iquote('para_into,13.1.1.1.2,10.1.1,demod,32')] ).

cnf(37,plain,
    double_divide(double_divide(identity,double_divide(A,identity)),identity) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[26]),32,32]),
    [iquote('back_demod,25,demod,32,32')] ).

cnf(39,plain,
    double_divide(double_divide(double_divide(A,identity),A),identity) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[24]),32]),
    [iquote('back_demod,23,demod,32')] ).

cnf(41,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[17]),32]),
    [iquote('back_demod,17,demod,32')] ).

cnf(51,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(identity,double_divide(identity,double_divide(B,identity))),double_divide(double_divide(B,double_divide(A,C)),identity))) = double_divide(identity,double_divide(identity,double_divide(C,identity))),
    inference(para_into,[status(thm),theory(equality)],[29,29]),
    [iquote('para_into,29.1.1.2.1,29.1.1')] ).

cnf(53,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(identity,A)),identity)) = double_divide(identity,double_divide(identity,double_divide(B,identity))),
    inference(para_from,[status(thm),theory(equality)],[32,29]),
    [iquote('para_from,31.1.1,29.1.1.2.2')] ).

cnf(61,plain,
    double_divide(double_divide(A,identity),A) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,39]),32,32,32])]),
    [iquote('para_into,33.1.1.1.1.1,39.1.1,demod,32,32,32,flip.1')] ).

cnf(63,plain,
    double_divide(double_divide(double_divide(double_divide(A,identity),identity),identity),A) = identity,
    inference(para_from,[status(thm),theory(equality)],[34,10]),
    [iquote('para_from,33.1.1,10.1.1.2')] ).

cnf(68,plain,
    double_divide(identity,double_divide(double_divide(A,B),B)) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[34,29]),34]),
    [iquote('para_from,33.1.1,29.1.1.2.1.2,demod,34')] ).

cnf(69,plain,
    double_divide(A,double_divide(double_divide(double_divide(A,identity),identity),identity)) = identity,
    inference(para_into,[status(thm),theory(equality)],[61,34]),
    [iquote('para_into,61.1.1.1,33.1.1')] ).

cnf(71,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(double_divide(A,B),identity)))) = double_divide(B,double_divide(identity,double_divide(A,identity))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[61,29]),68])]),
    [iquote('para_from,61.1.1,29.1.1.2.1,demod,68,flip.1')] ).

cnf(78,plain,
    double_divide(double_divide(identity,A),identity) = double_divide(identity,double_divide(identity,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[37,34]),34]),
    [iquote('para_into,37.1.1.1.2,33.1.1,demod,34')] ).

cnf(80,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(A,identity)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[41]),78]),
    [iquote('back_demod,41,demod,78')] ).

cnf(81,plain,
    double_divide(A,B) = double_divide(B,double_divide(identity,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[71]),80]),
    [iquote('back_demod,71,demod,80')] ).

cnf(82,plain,
    double_divide(A,double_divide(identity,double_divide(B,identity))) = double_divide(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[81])]),
    [iquote('copy,81,flip.1')] ).

cnf(85,plain,
    double_divide(A,double_divide(double_divide(B,identity),A)) = double_divide(identity,double_divide(identity,double_divide(B,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[63,29]),34]),
    [iquote('para_from,63.1.1,29.1.1.2.1.2,demod,34')] ).

cnf(88,plain,
    double_divide(identity,double_divide(identity,double_divide(A,identity))) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[69,29]),85,85,80])]),
    [iquote('para_from,69.1.1,29.1.1.2.1,demod,85,85,80,flip.1')] ).

cnf(89,plain,
    double_divide(double_divide(double_divide(double_divide(A,identity),identity),identity),double_divide(double_divide(B,identity),double_divide(A,identity))) = double_divide(identity,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[69,29]),88]),
    [iquote('para_from,69.1.1,29.1.1.2.1.2,demod,88')] ).

cnf(92,plain,
    double_divide(A,double_divide(double_divide(B,identity),A)) = double_divide(identity,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[85]),88]),
    [iquote('back_demod,84,demod,88')] ).

cnf(94,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[80]),88]),
    [iquote('back_demod,79,demod,88')] ).

cnf(101,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(identity,A)),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[53]),94]),
    [iquote('back_demod,53,demod,94')] ).

cnf(103,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(B,identity),double_divide(double_divide(B,double_divide(A,C)),identity))) = double_divide(C,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[51]),94,94]),
    [iquote('back_demod,51,demod,94,94')] ).

cnf(107,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[29]),94]),
    [iquote('back_demod,29,demod,94')] ).

cnf(109,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[88]),94]),
    [iquote('back_demod,87,demod,94')] ).

cnf(110,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[78]),94]),
    [iquote('back_demod,77,demod,94')] ).

cnf(114,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[109,34]),92])]),
    [iquote('para_into,109.1.1,33.1.1,demod,92,flip.1')] ).

cnf(115,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[82]),114]),
    [iquote('back_demod,82,demod,114')] ).

cnf(118,plain,
    double_divide(double_divide(double_divide(double_divide(A,identity),identity),identity),double_divide(B,double_divide(A,identity))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[89,34]),92,114]),
    [iquote('para_into,89.1.1.2.1,33.1.1,demod,92,114')] ).

cnf(121,plain,
    double_divide(double_divide(double_divide(A,identity),identity),identity) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[89,69]),34]),
    [iquote('para_into,89.1.1.2,69.1.1,demod,34')] ).

cnf(124,plain,
    double_divide(double_divide(identity,A),double_divide(B,double_divide(A,identity))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[118]),121]),
    [iquote('back_demod,118,demod,121')] ).

cnf(136,plain,
    double_divide(double_divide(double_divide(identity,double_divide(c3,b3)),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(para_from,[status(thm),theory(equality)],[115,12]),
    [iquote('para_from,115.1.1,12.1.1.1.1')] ).

cnf(141,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[92,110]),94]),
    [iquote('para_into,91.1.1.2.1,110.1.1,demod,94')] ).

cnf(149,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[141,141]),
    [iquote('para_into,140.1.1.2,140.1.1')] ).

cnf(151,plain,
    double_divide(A,double_divide(A,B)) = B,
    inference(para_into,[status(thm),theory(equality)],[141,115]),
    [iquote('para_into,140.1.1.2,115.1.1')] ).

cnf(152,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(para_into,[status(thm),theory(equality)],[141,115]),
    [iquote('para_into,140.1.1,115.1.1')] ).

cnf(159,plain,
    double_divide(double_divide(double_divide(identity,A),B),identity) = double_divide(A,double_divide(B,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[101,149])]),
    [iquote('para_into,101.1.1.2.1,148.1.1,flip.1')] ).

cnf(164,plain,
    double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) != double_divide(double_divide(c3,b3),double_divide(a3,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[136]),159])]),
    [iquote('back_demod,136,demod,159,flip.1')] ).

cnf(167,plain,
    double_divide(double_divide(identity,A),B) = double_divide(B,double_divide(A,identity)),
    inference(para_into,[status(thm),theory(equality)],[124,152]),
    [iquote('para_into,124.1.1.2,152.1.1')] ).

cnf(188,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(A,B),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[103,167]),141,159,151]),
    [iquote('para_into,103.1.1.2.1,167.1.1,demod,141,159,151')] ).

cnf(201,plain,
    double_divide(double_divide(A,double_divide(B,identity)),identity) = double_divide(B,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[103,124]),149,188])]),
    [iquote('para_into,103.1.1.2.2.1.2,124.1.1,demod,149,188,flip.1')] ).

cnf(210,plain,
    double_divide(double_divide(c3,b3),double_divide(a3,identity)) != double_divide(double_divide(b3,a3),double_divide(c3,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[164]),201])]),
    [iquote('back_demod,164,demod,201,flip.1')] ).

cnf(376,plain,
    double_divide(double_divide(A,double_divide(B,C)),double_divide(B,identity)) = double_divide(C,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[107,151])]),
    [iquote('para_from,107.1.1,150.1.1.2,flip.1')] ).

cnf(1209,plain,
    double_divide(double_divide(A,B),double_divide(C,identity)) = double_divide(double_divide(B,C),double_divide(A,identity)),
    inference(para_into,[status(thm),theory(equality)],[376,141]),
    [iquote('para_into,376.1.1.1.2,140.1.1')] ).

cnf(1210,plain,
    $false,
    inference(binary,[status(thm)],[1209,210]),
    [iquote('binary,1209.1,210.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : GRP575-1 : TPTP v8.1.0. Released v2.6.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n009.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:21:06 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.75/1.97  ----- Otter 3.3f, August 2004 -----
% 1.75/1.97  The process was started by sandbox2 on n009.cluster.edu,
% 1.75/1.97  Wed Jul 27 05:21:06 2022
% 1.75/1.97  The command was "./otter".  The process ID is 18555.
% 1.75/1.97  
% 1.75/1.97  set(prolog_style_variables).
% 1.75/1.97  set(auto).
% 1.75/1.97     dependent: set(auto1).
% 1.75/1.97     dependent: set(process_input).
% 1.75/1.97     dependent: clear(print_kept).
% 1.75/1.97     dependent: clear(print_new_demod).
% 1.75/1.97     dependent: clear(print_back_demod).
% 1.75/1.97     dependent: clear(print_back_sub).
% 1.75/1.97     dependent: set(control_memory).
% 1.75/1.97     dependent: assign(max_mem, 12000).
% 1.75/1.97     dependent: assign(pick_given_ratio, 4).
% 1.75/1.97     dependent: assign(stats_level, 1).
% 1.75/1.97     dependent: assign(max_seconds, 10800).
% 1.75/1.97  clear(print_given).
% 1.75/1.97  
% 1.75/1.97  list(usable).
% 1.75/1.97  0 [] A=A.
% 1.75/1.97  0 [] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))),double_divide(identity,identity))=B.
% 1.75/1.97  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.75/1.97  0 [] inverse(A)=double_divide(A,identity).
% 1.75/1.97  0 [] identity=double_divide(A,inverse(A)).
% 1.75/1.97  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.75/1.97  end_of_list.
% 1.75/1.97  
% 1.75/1.97  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.75/1.97  
% 1.75/1.97  All clauses are units, and equality is present; the
% 1.75/1.97  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.75/1.97  
% 1.75/1.97     dependent: set(knuth_bendix).
% 1.75/1.97     dependent: set(anl_eq).
% 1.75/1.97     dependent: set(para_from).
% 1.75/1.97     dependent: set(para_into).
% 1.75/1.97     dependent: clear(para_from_right).
% 1.75/1.97     dependent: clear(para_into_right).
% 1.75/1.97     dependent: set(para_from_vars).
% 1.75/1.97     dependent: set(eq_units_both_ways).
% 1.75/1.97     dependent: set(dynamic_demod_all).
% 1.75/1.97     dependent: set(dynamic_demod).
% 1.75/1.97     dependent: set(order_eq).
% 1.75/1.97     dependent: set(back_demod).
% 1.75/1.97     dependent: set(lrpo).
% 1.75/1.97  
% 1.75/1.97  ------------> process usable:
% 1.75/1.97  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.75/1.97  
% 1.75/1.97  ------------> process sos:
% 1.75/1.97  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.75/1.97  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))),double_divide(identity,identity))=B.
% 1.75/1.97  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(C,A)),double_divide(C,identity))),double_divide(identity,identity))=B.
% 1.75/1.97  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.75/1.97  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.75/1.97  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.75/1.97  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.75/1.97  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.75/1.97  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.75/1.97    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.75/1.97  >>>> Starting back demodulation with 4.
% 1.75/1.97  >>>> Starting back demodulation with 6.
% 1.75/1.97      >> back demodulating 1 with 6.
% 1.75/1.97  >>>> Starting back demodulation with 8.
% 1.75/1.97  >>>> Starting back demodulation with 11.
% 1.75/1.97  
% 1.75/1.97  ======= end of input processing =======
% 1.75/1.97  
% 1.75/1.97  =========== start of search ===========
% 1.75/1.97  
% 1.75/1.97  -------- PROOF -------- 
% 1.75/1.97  
% 1.75/1.97  ----> UNIT CONFLICT at   0.07 sec ----> 1210 [binary,1209.1,210.1] $F.
% 1.75/1.97  
% 1.75/1.97  Length of proof is 53.  Level of proof is 17.
% 1.75/1.97  
% 1.75/1.97  ---------------- PROOF ----------------
% 1.75/1.97  % SZS status Unsatisfiable
% 1.75/1.97  % SZS output start Refutation
% See solution above
% 1.75/1.97  ------------ end of proof -------------
% 1.75/1.97  
% 1.75/1.97  
% 1.75/1.97  Search stopped by max_proofs option.
% 1.75/1.97  
% 1.75/1.97  
% 1.75/1.97  Search stopped by max_proofs option.
% 1.75/1.97  
% 1.75/1.97  ============ end of search ============
% 1.75/1.97  
% 1.75/1.97  -------------- statistics -------------
% 1.75/1.97  clauses given                 85
% 1.75/1.97  clauses generated           3638
% 1.75/1.97  clauses kept                 707
% 1.75/1.97  clauses forward subsumed    3462
% 1.75/1.97  clauses back subsumed          5
% 1.75/1.97  Kbytes malloced             2929
% 1.75/1.97  
% 1.75/1.97  ----------- times (seconds) -----------
% 1.75/1.97  user CPU time          0.07          (0 hr, 0 min, 0 sec)
% 1.75/1.97  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.75/1.97  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.75/1.97  
% 1.75/1.97  That finishes the proof of the theorem.
% 1.75/1.97  
% 1.75/1.97  Process 18555 finished Wed Jul 27 05:21:07 2022
% 1.75/1.97  Otter interrupted
% 1.75/1.97  PROOF FOUND
%------------------------------------------------------------------------------