TSTP Solution File: GRP571-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP571-1 : TPTP v8.2.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Mon Jun 24 07:00:49 EDT 2024

% Result   : Unsatisfiable 3.70s 1.17s
% Output   : CNFRefutation 3.70s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   33
%            Number of leaves      :    5
% Syntax   : Number of clauses     :  103 ( 103 unt;   0 nHn;   5 RR)
%            Number of literals    :  103 ( 102 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :  232 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),double_divide(X2,identity))),double_divide(identity,identity)) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms_3) ).

cnf(c_68,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_69,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),inverse(X2))),inverse(identity)) = X1,
    inference(demodulation,[status(thm)],[c_49,c_51]) ).

cnf(c_120,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_68]) ).

cnf(c_121,plain,
    multiply(inverse(X0),X0) = inverse(identity),
    inference(superposition,[status(thm)],[c_52,c_68]) ).

cnf(c_126,plain,
    multiply(identity,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_120]) ).

cnf(c_164,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,inverse(X0)),inverse(identity))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_51,c_69]) ).

cnf(c_165,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,identity),inverse(inverse(X0)))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_52,c_69]) ).

cnf(c_169,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,double_divide(X2,X3))),multiply(X3,X2))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_68,c_69]) ).

cnf(c_171,plain,
    double_divide(double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),inverse(X2))),double_divide(double_divide(X3,X1),inverse(inverse(identity)))),inverse(identity)) = X3,
    inference(superposition,[status(thm)],[c_69,c_69]) ).

cnf(c_175,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,identity),multiply(identity,X0))),inverse(identity)) = X1,
    inference(light_normalisation,[status(thm)],[c_165,c_120]) ).

cnf(c_216,plain,
    double_divide(double_divide(X0,double_divide(identity,inverse(identity))),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_52,c_164]) ).

cnf(c_225,plain,
    multiply(inverse(identity),double_divide(X0,double_divide(double_divide(X1,inverse(X0)),inverse(identity)))) = inverse(X1),
    inference(superposition,[status(thm)],[c_164,c_68]) ).

cnf(c_319,plain,
    double_divide(inverse(X0),inverse(identity)) = X0,
    inference(demodulation,[status(thm)],[c_216,c_51,c_52]) ).

cnf(c_327,plain,
    double_divide(double_divide(identity,double_divide(X0,inverse(identity))),inverse(identity)) = inverse(X0),
    inference(superposition,[status(thm)],[c_319,c_164]) ).

cnf(c_395,plain,
    double_divide(double_divide(X0,double_divide(inverse(X1),multiply(identity,X0))),inverse(identity)) = X1,
    inference(demodulation,[status(thm)],[c_175,c_51]) ).

cnf(c_405,plain,
    double_divide(double_divide(identity,double_divide(X0,inverse(identity))),inverse(identity)) = double_divide(X1,double_divide(inverse(X0),multiply(identity,X1))),
    inference(superposition,[status(thm)],[c_395,c_164]) ).

cnf(c_407,plain,
    double_divide(X0,double_divide(inverse(X1),multiply(identity,X0))) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_405,c_327]) ).

cnf(c_437,plain,
    double_divide(X0,double_divide(multiply(X1,X2),multiply(identity,X0))) = multiply(X1,X2),
    inference(superposition,[status(thm)],[c_68,c_407]) ).

cnf(c_507,plain,
    inverse(double_divide(X0,inverse(identity))) = X0,
    inference(superposition,[status(thm)],[c_327,c_164]) ).

cnf(c_548,plain,
    multiply(inverse(identity),X0) = X0,
    inference(demodulation,[status(thm)],[c_507,c_68]) ).

cnf(c_554,plain,
    inverse(identity) = identity,
    inference(superposition,[status(thm)],[c_548,c_121]) ).

cnf(c_555,plain,
    multiply(identity,X0) = X0,
    inference(demodulation,[status(thm)],[c_548,c_554]) ).

cnf(c_562,plain,
    multiply(inverse(X0),X0) = identity,
    inference(demodulation,[status(thm)],[c_121,c_554]) ).

cnf(c_568,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_120,c_555]) ).

cnf(c_569,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(demodulation,[status(thm)],[c_126,c_555]) ).

cnf(c_654,plain,
    multiply(X0,inverse(X0)) = identity,
    inference(superposition,[status(thm)],[c_568,c_562]) ).

cnf(c_672,plain,
    multiply(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_654]) ).

cnf(c_726,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,double_divide(X2,X3))),multiply(X3,X2))),identity) = X1,
    inference(light_normalisation,[status(thm)],[c_169,c_554]) ).

cnf(c_727,plain,
    multiply(double_divide(double_divide(X0,double_divide(X1,double_divide(X2,X3))),multiply(X3,X2)),X1) = X0,
    inference(demodulation,[status(thm)],[c_726,c_51,c_68]) ).

cnf(c_881,plain,
    double_divide(X0,double_divide(multiply(X1,X2),X0)) = multiply(X1,X2),
    inference(light_normalisation,[status(thm)],[c_437,c_555]) ).

cnf(c_892,plain,
    double_divide(X0,double_divide(X1,X0)) = X1,
    inference(superposition,[status(thm)],[c_727,c_881]) ).

cnf(c_911,plain,
    double_divide(double_divide(X0,X1),X0) = X1,
    inference(superposition,[status(thm)],[c_892,c_892]) ).

cnf(c_970,plain,
    multiply(X0,double_divide(X0,X1)) = inverse(X1),
    inference(superposition,[status(thm)],[c_911,c_68]) ).

cnf(c_974,plain,
    double_divide(double_divide(X0,double_divide(X1,X2)),X3) = multiply(double_divide(X3,multiply(X2,X1)),X0),
    inference(superposition,[status(thm)],[c_911,c_727]) ).

cnf(c_1093,plain,
    multiply(identity,double_divide(X0,double_divide(double_divide(X1,inverse(X0)),identity))) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_225,c_554]) ).

cnf(c_1094,plain,
    double_divide(X0,multiply(inverse(X0),X1)) = inverse(X1),
    inference(demodulation,[status(thm)],[c_1093,c_51,c_68,c_555]) ).

cnf(c_1102,plain,
    double_divide(inverse(X0),multiply(X0,X1)) = inverse(X1),
    inference(superposition,[status(thm)],[c_568,c_1094]) ).

cnf(c_1109,plain,
    double_divide(inverse(X0),X1) = multiply(inverse(X1),X0),
    inference(superposition,[status(thm)],[c_1094,c_911]) ).

cnf(c_1188,plain,
    double_divide(multiply(X0,X1),inverse(X1)) = inverse(X0),
    inference(superposition,[status(thm)],[c_1102,c_892]) ).

cnf(c_1192,plain,
    double_divide(inverse(X0),inverse(X1)) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_1102,c_911]) ).

cnf(c_1195,plain,
    multiply(multiply(X0,X1),inverse(X0)) = inverse(inverse(X1)),
    inference(superposition,[status(thm)],[c_1102,c_68]) ).

cnf(c_1217,plain,
    double_divide(inverse(X0),double_divide(X1,X2)) = multiply(multiply(X2,X1),X0),
    inference(superposition,[status(thm)],[c_68,c_1109]) ).

cnf(c_1219,plain,
    double_divide(inverse(X0),multiply(X1,X2)) = multiply(double_divide(X2,X1),X0),
    inference(superposition,[status(thm)],[c_569,c_1109]) ).

cnf(c_1259,plain,
    double_divide(multiply(X0,double_divide(X1,X2)),multiply(X2,X1)) = inverse(X0),
    inference(superposition,[status(thm)],[c_68,c_1188]) ).

cnf(c_1309,plain,
    multiply(multiply(X0,X1),inverse(X0)) = X1,
    inference(demodulation,[status(thm)],[c_1195,c_568]) ).

cnf(c_1320,plain,
    multiply(multiply(double_divide(X0,X1),X2),multiply(X1,X0)) = X2,
    inference(superposition,[status(thm)],[c_68,c_1309]) ).

cnf(c_1328,plain,
    multiply(double_divide(inverse(X0),multiply(X0,X1)),X1) = identity,
    inference(superposition,[status(thm)],[c_1309,c_672]) ).

cnf(c_1370,plain,
    multiply(inverse(X0),multiply(X1,X2)) = double_divide(double_divide(X2,X1),X0),
    inference(superposition,[status(thm)],[c_970,c_1320]) ).

cnf(c_1603,plain,
    double_divide(multiply(X0,X1),inverse(X2)) = multiply(X2,double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_1192]) ).

cnf(c_1604,plain,
    double_divide(X0,inverse(X1)) = multiply(X1,inverse(X0)),
    inference(superposition,[status(thm)],[c_568,c_1192]) ).

cnf(c_1605,plain,
    double_divide(double_divide(X0,X1),inverse(X2)) = multiply(X2,multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_569,c_1192]) ).

cnf(c_1670,plain,
    double_divide(multiply(X0,X1),double_divide(X2,X3)) = multiply(multiply(X3,X2),double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_1217]) ).

cnf(c_1873,plain,
    double_divide(multiply(X0,X1),identity) = multiply(identity,double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_554,c_1603]) ).

cnf(c_1874,plain,
    double_divide(multiply(X0,X1),multiply(X2,X3)) = multiply(double_divide(X3,X2),double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_1603]) ).

cnf(c_1905,plain,
    multiply(X0,multiply(double_divide(X1,X0),X1)) = identity,
    inference(demodulation,[status(thm)],[c_1328,c_974,c_1605]) ).

cnf(c_1920,plain,
    multiply(double_divide(X0,X1),multiply(X0,X1)) = identity,
    inference(superposition,[status(thm)],[c_892,c_1905]) ).

cnf(c_1921,plain,
    multiply(X0,multiply(X1,double_divide(X0,X1))) = identity,
    inference(superposition,[status(thm)],[c_911,c_1905]) ).

cnf(c_1926,plain,
    double_divide(multiply(double_divide(X0,X1),X0),X1) = inverse(identity),
    inference(superposition,[status(thm)],[c_1905,c_569]) ).

cnf(c_1934,plain,
    double_divide(multiply(double_divide(X0,X1),X0),X1) = identity,
    inference(light_normalisation,[status(thm)],[c_1926,c_554]) ).

cnf(c_2059,plain,
    double_divide(multiply(X0,X1),double_divide(X0,X1)) = inverse(identity),
    inference(superposition,[status(thm)],[c_1920,c_569]) ).

cnf(c_2064,plain,
    double_divide(multiply(X0,X1),double_divide(X0,X1)) = identity,
    inference(light_normalisation,[status(thm)],[c_2059,c_554]) ).

cnf(c_2139,plain,
    double_divide(multiply(X0,double_divide(X1,X0)),X1) = inverse(identity),
    inference(superposition,[status(thm)],[c_1921,c_569]) ).

cnf(c_2147,plain,
    double_divide(multiply(X0,double_divide(X1,X0)),X1) = identity,
    inference(light_normalisation,[status(thm)],[c_2139,c_554]) ).

cnf(c_2237,plain,
    multiply(double_divide(X0,X1),X0) = double_divide(X1,identity),
    inference(superposition,[status(thm)],[c_1934,c_892]) ).

cnf(c_3132,plain,
    double_divide(identity,multiply(X0,X1)) = double_divide(X0,X1),
    inference(superposition,[status(thm)],[c_2064,c_911]) ).

cnf(c_3288,plain,
    double_divide(multiply(X0,multiply(X1,double_divide(X0,X1))),multiply(X2,X3)) = multiply(double_divide(X3,X2),identity),
    inference(superposition,[status(thm)],[c_2147,c_1874]) ).

cnf(c_3322,plain,
    double_divide(identity,multiply(X0,X1)) = multiply(double_divide(X1,X0),identity),
    inference(light_normalisation,[status(thm)],[c_3288,c_1921]) ).

cnf(c_3323,plain,
    multiply(double_divide(X0,X1),identity) = double_divide(X1,X0),
    inference(light_normalisation,[status(thm)],[c_3322,c_3132]) ).

cnf(c_3339,plain,
    multiply(double_divide(X0,X1),X0) = inverse(X1),
    inference(demodulation,[status(thm)],[c_2237,c_51]) ).

cnf(c_3352,plain,
    inverse(double_divide(X0,X1)) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_892,c_3339]) ).

cnf(c_3353,plain,
    multiply(X0,double_divide(X1,X0)) = inverse(X1),
    inference(superposition,[status(thm)],[c_911,c_3339]) ).

cnf(c_3368,plain,
    double_divide(inverse(X0),multiply(X1,X2)) = inverse(double_divide(double_divide(X2,X1),X0)),
    inference(superposition,[status(thm)],[c_3339,c_1259]) ).

cnf(c_3373,plain,
    inverse(double_divide(double_divide(X0,X1),X2)) = multiply(double_divide(X0,X1),X2),
    inference(light_normalisation,[status(thm)],[c_3368,c_1219]) ).

cnf(c_3403,plain,
    inverse(multiply(X0,X1)) = double_divide(X0,X1),
    inference(superposition,[status(thm)],[c_3352,c_568]) ).

cnf(c_3405,plain,
    multiply(X0,X1) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_3352,c_68]) ).

cnf(c_3413,plain,
    multiply(a3,multiply(b3,c3)) != multiply(c3,multiply(a3,b3)),
    inference(demodulation,[status(thm)],[c_53,c_3405]) ).

cnf(c_3474,plain,
    double_divide(X0,inverse(X1)) = multiply(inverse(X0),X1),
    inference(superposition,[status(thm)],[c_3405,c_1604]) ).

cnf(c_3475,plain,
    double_divide(multiply(X0,X1),double_divide(X2,X3)) = multiply(double_divide(X1,X0),multiply(X3,X2)),
    inference(superposition,[status(thm)],[c_3405,c_1670]) ).

cnf(c_3476,plain,
    double_divide(multiply(X0,X1),multiply(X2,X3)) = multiply(double_divide(X1,X0),double_divide(X3,X2)),
    inference(superposition,[status(thm)],[c_3405,c_1874]) ).

cnf(c_3519,plain,
    multiply(double_divide(X0,X1),identity) = inverse(multiply(X0,X1)),
    inference(superposition,[status(thm)],[c_2064,c_3353]) ).

cnf(c_3536,plain,
    double_divide(X0,X1) = double_divide(X1,X0),
    inference(light_normalisation,[status(thm)],[c_3519,c_3323,c_3403]) ).

cnf(c_3613,plain,
    double_divide(inverse(X0),inverse(X1)) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_3536,c_1192]) ).

cnf(c_3976,plain,
    double_divide(double_divide(X0,X1),inverse(X2)) = multiply(multiply(X0,X1),X2),
    inference(superposition,[status(thm)],[c_3352,c_3474]) ).

cnf(c_4086,plain,
    double_divide(double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),inverse(X2))),double_divide(double_divide(X3,X1),identity)),identity) = X3,
    inference(light_normalisation,[status(thm)],[c_171,c_554]) ).

cnf(c_4087,plain,
    double_divide(multiply(X0,multiply(X1,multiply(X2,double_divide(X0,X1)))),double_divide(X2,X3)) = X3,
    inference(demodulation,[status(thm)],[c_4086,c_51,c_1873,c_3373,c_3405,c_3403,c_3476,c_3976]) ).

cnf(c_4153,plain,
    multiply(X0,multiply(X1,multiply(X2,double_divide(X0,X1)))) = X2,
    inference(superposition,[status(thm)],[c_4087,c_892]) ).

cnf(c_4650,plain,
    multiply(X0,multiply(X1,multiply(X2,double_divide(X1,X0)))) = X2,
    inference(superposition,[status(thm)],[c_3536,c_4153]) ).

cnf(c_4711,plain,
    double_divide(double_divide(X0,X1),X2) = double_divide(X2,double_divide(X1,X0)),
    inference(demodulation,[status(thm)],[c_1370,c_3403,c_3474]) ).

cnf(c_4747,plain,
    double_divide(double_divide(inverse(X0),inverse(X1)),X2) = double_divide(X2,multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_3613,c_4711]) ).

cnf(c_4808,plain,
    double_divide(multiply(X0,X1),X2) = double_divide(X2,multiply(X1,X0)),
    inference(light_normalisation,[status(thm)],[c_4747,c_3613]) ).

cnf(c_4897,plain,
    multiply(double_divide(X0,X1),multiply(X1,multiply(X2,X0))) = X2,
    inference(superposition,[status(thm)],[c_892,c_4650]) ).

cnf(c_5509,plain,
    inverse(double_divide(multiply(X0,X1),X2)) = multiply(X2,multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_4808,c_3352]) ).

cnf(c_5984,plain,
    double_divide(multiply(X0,X1),double_divide(multiply(X2,X1),X0)) = X2,
    inference(demodulation,[status(thm)],[c_4897,c_3475]) ).

cnf(c_6039,plain,
    inverse(double_divide(multiply(X0,X1),X2)) = multiply(multiply(X2,X1),X0),
    inference(superposition,[status(thm)],[c_5984,c_970]) ).

cnf(c_6048,plain,
    multiply(multiply(X0,X1),X2) = multiply(X0,multiply(X1,X2)),
    inference(light_normalisation,[status(thm)],[c_6039,c_5509]) ).

cnf(c_8088,plain,
    multiply(X0,multiply(X1,X2)) = multiply(X1,multiply(X2,X0)),
    inference(superposition,[status(thm)],[c_6048,c_3405]) ).

cnf(c_8106,plain,
    multiply(a3,multiply(b3,c3)) != multiply(a3,multiply(b3,c3)),
    inference(demodulation,[status(thm)],[c_3413,c_8088]) ).

cnf(c_8107,plain,
    $false,
    inference(equality_resolution_simp,[status(thm)],[c_8106]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.13  % Problem  : GRP571-1 : TPTP v8.2.0. Released v2.6.0.
% 0.08/0.13  % Command  : run_iprover %s %d THM
% 0.12/0.34  % Computer : n019.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Thu Jun 20 08:23:54 EDT 2024
% 0.12/0.34  % CPUTime  : 
% 0.21/0.47  Running UEQ theorem proving
% 0.21/0.47  Running: /export/starexec/sandbox/solver/bin/run_problem --schedule casc_j12_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox/benchmark/theBenchmark.p 300
% 3.70/1.17  % SZS status Started for theBenchmark.p
% 3.70/1.17  % SZS status Unsatisfiable for theBenchmark.p
% 3.70/1.17  
% 3.70/1.17  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.70/1.17  
% 3.70/1.17  ------  iProver source info
% 3.70/1.17  
% 3.70/1.17  git: date: 2024-06-12 09:56:46 +0000
% 3.70/1.17  git: sha1: 4869ab62f0a3398f9d3a35e6db7918ebd3847e49
% 3.70/1.17  git: non_committed_changes: false
% 3.70/1.17  
% 3.70/1.17  ------ Parsing...successful
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.70/1.17  
% 3.70/1.17  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.70/1.17  
% 3.70/1.17  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.70/1.17  ------ Proving...
% 3.70/1.17  ------ Problem Properties 
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  clauses                                 5
% 3.70/1.17  conjectures                             1
% 3.70/1.17  EPR                                     0
% 3.70/1.17  Horn                                    5
% 3.70/1.17  unary                                   5
% 3.70/1.17  binary                                  0
% 3.70/1.17  lits                                    5
% 3.70/1.17  lits eq                                 5
% 3.70/1.17  fd_pure                                 0
% 3.70/1.17  fd_pseudo                               0
% 3.70/1.17  fd_cond                                 0
% 3.70/1.17  fd_pseudo_cond                          0
% 3.70/1.17  AC symbols                              0
% 3.70/1.17  
% 3.70/1.17  ------ Input Options Time Limit: Unbounded
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  ------ 
% 3.70/1.17  Current options:
% 3.70/1.17  ------ 
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  ------ Proving...
% 3.70/1.17  
% 3.70/1.17  
% 3.70/1.17  % SZS status Unsatisfiable for theBenchmark.p
% 3.70/1.17  
% 3.70/1.17  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.70/1.17  
% 3.70/1.17  
%------------------------------------------------------------------------------