TSTP Solution File: GRP571-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP571-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:22:57 EDT 2024

% Result   : Unsatisfiable 3.90s 1.00s
% Output   : CNFRefutation 3.90s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),double_divide(X2,identity))),double_divide(identity,identity)) = X1,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_3) ).

cnf(c_68,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_69,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),inverse(X2))),inverse(identity)) = X1,
    inference(demodulation,[status(thm)],[c_49,c_51]) ).

cnf(c_77,plain,
    multiply(a3,b3) = sP0_iProver_def,
    definition ).

cnf(c_78,plain,
    multiply(sP0_iProver_def,c3) = sP1_iProver_def,
    definition ).

cnf(c_79,plain,
    multiply(b3,c3) = sP2_iProver_def,
    definition ).

cnf(c_80,plain,
    multiply(a3,sP2_iProver_def) = sP3_iProver_def,
    definition ).

cnf(c_81,negated_conjecture,
    sP1_iProver_def != sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_53,c_79,c_80,c_77,c_78]) ).

cnf(c_133,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_68]) ).

cnf(c_134,plain,
    multiply(inverse(X0),X0) = inverse(identity),
    inference(superposition,[status(thm)],[c_52,c_68]) ).

cnf(c_135,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_52]) ).

cnf(c_139,plain,
    multiply(identity,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_133]) ).

cnf(c_140,plain,
    multiply(identity,inverse(X0)) = inverse(multiply(identity,X0)),
    inference(superposition,[status(thm)],[c_133,c_133]) ).

cnf(c_142,plain,
    double_divide(inverse(X0),multiply(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_133,c_52]) ).

cnf(c_146,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,inverse(X0)),inverse(identity))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_51,c_69]) ).

cnf(c_147,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,identity),inverse(inverse(X0)))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_52,c_69]) ).

cnf(c_152,plain,
    multiply(inverse(identity),double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),inverse(X2)))) = inverse(X1),
    inference(superposition,[status(thm)],[c_69,c_68]) ).

cnf(c_153,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,identity),multiply(identity,X0))),inverse(identity)) = X1,
    inference(light_normalisation,[status(thm)],[c_147,c_133]) ).

cnf(c_254,plain,
    double_divide(multiply(identity,inverse(X0)),multiply(identity,multiply(identity,X0))) = identity,
    inference(superposition,[status(thm)],[c_140,c_142]) ).

cnf(c_258,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,multiply(identity,X2))),multiply(identity,inverse(X2)))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_140,c_69]) ).

cnf(c_345,plain,
    double_divide(double_divide(X0,double_divide(identity,inverse(identity))),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_52,c_146]) ).

cnf(c_346,plain,
    double_divide(X0,double_divide(double_divide(X1,double_divide(X0,X2)),inverse(X2))) = double_divide(double_divide(identity,double_divide(X1,inverse(identity))),inverse(identity)),
    inference(superposition,[status(thm)],[c_69,c_146]) ).

cnf(c_350,plain,
    double_divide(double_divide(multiply(identity,X0),double_divide(double_divide(X1,multiply(identity,inverse(X0))),inverse(identity))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_140,c_146]) ).

cnf(c_355,plain,
    multiply(inverse(identity),double_divide(X0,double_divide(double_divide(X1,inverse(X0)),inverse(identity)))) = inverse(X1),
    inference(superposition,[status(thm)],[c_146,c_68]) ).

cnf(c_388,plain,
    double_divide(inverse(X0),inverse(identity)) = X0,
    inference(demodulation,[status(thm)],[c_345,c_51,c_52]) ).

cnf(c_389,plain,
    double_divide(multiply(X0,X1),inverse(identity)) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_68,c_388]) ).

cnf(c_396,plain,
    double_divide(double_divide(identity,double_divide(X0,inverse(identity))),inverse(identity)) = inverse(X0),
    inference(superposition,[status(thm)],[c_388,c_146]) ).

cnf(c_466,plain,
    double_divide(sP0_iProver_def,inverse(identity)) = double_divide(b3,a3),
    inference(superposition,[status(thm)],[c_77,c_389]) ).

cnf(c_467,plain,
    double_divide(sP2_iProver_def,inverse(identity)) = double_divide(c3,b3),
    inference(superposition,[status(thm)],[c_79,c_389]) ).

cnf(c_468,plain,
    double_divide(sP1_iProver_def,inverse(identity)) = double_divide(c3,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_78,c_389]) ).

cnf(c_469,plain,
    double_divide(sP3_iProver_def,inverse(identity)) = double_divide(sP2_iProver_def,a3),
    inference(superposition,[status(thm)],[c_80,c_389]) ).

cnf(c_852,plain,
    double_divide(double_divide(X0,double_divide(inverse(X1),multiply(identity,X0))),inverse(identity)) = X1,
    inference(demodulation,[status(thm)],[c_153,c_51]) ).

cnf(c_862,plain,
    double_divide(double_divide(identity,double_divide(X0,inverse(identity))),inverse(identity)) = double_divide(X1,double_divide(inverse(X0),multiply(identity,X1))),
    inference(superposition,[status(thm)],[c_852,c_146]) ).

cnf(c_864,plain,
    double_divide(X0,double_divide(inverse(X1),multiply(identity,X0))) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_862,c_396]) ).

cnf(c_994,plain,
    double_divide(X0,double_divide(multiply(X1,X2),multiply(identity,X0))) = multiply(X1,X2),
    inference(superposition,[status(thm)],[c_68,c_864]) ).

cnf(c_1009,plain,
    double_divide(multiply(identity,multiply(X0,X1)),multiply(identity,multiply(identity,double_divide(X1,X0)))) = identity,
    inference(superposition,[status(thm)],[c_68,c_254]) ).

cnf(c_1048,plain,
    inverse(double_divide(X0,inverse(identity))) = X0,
    inference(superposition,[status(thm)],[c_396,c_146]) ).

cnf(c_1091,plain,
    multiply(inverse(identity),X0) = X0,
    inference(demodulation,[status(thm)],[c_1048,c_68]) ).

cnf(c_1101,plain,
    inverse(identity) = identity,
    inference(superposition,[status(thm)],[c_1091,c_134]) ).

cnf(c_1102,plain,
    multiply(identity,X0) = X0,
    inference(demodulation,[status(thm)],[c_1091,c_1101]) ).

cnf(c_1104,plain,
    double_divide(sP2_iProver_def,a3) = double_divide(sP3_iProver_def,identity),
    inference(demodulation,[status(thm)],[c_469,c_1101]) ).

cnf(c_1105,plain,
    double_divide(c3,sP0_iProver_def) = double_divide(sP1_iProver_def,identity),
    inference(demodulation,[status(thm)],[c_468,c_1101]) ).

cnf(c_1106,plain,
    double_divide(c3,b3) = double_divide(sP2_iProver_def,identity),
    inference(demodulation,[status(thm)],[c_467,c_1101]) ).

cnf(c_1107,plain,
    double_divide(b3,a3) = double_divide(sP0_iProver_def,identity),
    inference(demodulation,[status(thm)],[c_466,c_1101]) ).

cnf(c_1125,plain,
    double_divide(inverse(X0),X0) = identity,
    inference(demodulation,[status(thm)],[c_142,c_1102]) ).

cnf(c_1126,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_133,c_1102]) ).

cnf(c_1127,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(demodulation,[status(thm)],[c_139,c_1102]) ).

cnf(c_1144,plain,
    multiply(identity,double_divide(double_divide(identity,double_divide(X0,identity)),identity)) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_152,c_346,c_1101]) ).

cnf(c_1145,plain,
    multiply(identity,double_divide(double_divide(identity,inverse(X0)),identity)) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1144,c_51]) ).

cnf(c_1146,plain,
    multiply(inverse(X0),identity) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1145,c_51,c_68,c_1102]) ).

cnf(c_1148,plain,
    multiply(multiply(X0,X1),identity) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_68,c_1146]) ).

cnf(c_1194,plain,
    multiply(X0,identity) = X0,
    inference(superposition,[status(thm)],[c_1102,c_1148]) ).

cnf(c_1225,plain,
    double_divide(multiply(X0,X1),double_divide(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_1125]) ).

cnf(c_1243,plain,
    double_divide(sP2_iProver_def,a3) = inverse(sP3_iProver_def),
    inference(demodulation,[status(thm)],[c_1104,c_51]) ).

cnf(c_1335,plain,
    double_divide(X0,double_divide(multiply(X1,X2),X0)) = multiply(X1,X2),
    inference(light_normalisation,[status(thm)],[c_994,c_1102]) ).

cnf(c_1346,plain,
    double_divide(X0,double_divide(X1,X0)) = X1,
    inference(superposition,[status(thm)],[c_1194,c_1335]) ).

cnf(c_1354,plain,
    double_divide(c3,sP0_iProver_def) = inverse(sP1_iProver_def),
    inference(demodulation,[status(thm)],[c_1105,c_51]) ).

cnf(c_1363,plain,
    double_divide(c3,b3) = inverse(sP2_iProver_def),
    inference(demodulation,[status(thm)],[c_1106,c_51]) ).

cnf(c_1388,plain,
    double_divide(b3,a3) = inverse(sP0_iProver_def),
    inference(demodulation,[status(thm)],[c_1107,c_51]) ).

cnf(c_1453,plain,
    double_divide(a3,inverse(sP0_iProver_def)) = b3,
    inference(superposition,[status(thm)],[c_1388,c_1346]) ).

cnf(c_1454,plain,
    double_divide(b3,inverse(sP2_iProver_def)) = c3,
    inference(superposition,[status(thm)],[c_1363,c_1346]) ).

cnf(c_1455,plain,
    double_divide(sP0_iProver_def,inverse(sP1_iProver_def)) = c3,
    inference(superposition,[status(thm)],[c_1354,c_1346]) ).

cnf(c_1456,plain,
    double_divide(a3,inverse(sP3_iProver_def)) = sP2_iProver_def,
    inference(superposition,[status(thm)],[c_1243,c_1346]) ).

cnf(c_1459,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_1225,c_1346]) ).

cnf(c_1460,plain,
    double_divide(double_divide(X0,X1),X0) = X1,
    inference(superposition,[status(thm)],[c_1346,c_1346]) ).

cnf(c_1465,plain,
    multiply(double_divide(X0,X1),X1) = inverse(X0),
    inference(superposition,[status(thm)],[c_1346,c_68]) ).

cnf(c_1524,plain,
    multiply(identity,multiply(X0,X1)) = inverse(double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_135,c_1465]) ).

cnf(c_1532,plain,
    multiply(X0,double_divide(X0,X1)) = inverse(X1),
    inference(superposition,[status(thm)],[c_1346,c_1465]) ).

cnf(c_1758,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X0,multiply(identity,X2))),multiply(identity,inverse(X2)))),identity) = X1,
    inference(light_normalisation,[status(thm)],[c_258,c_1101]) ).

cnf(c_1759,plain,
    multiply(double_divide(double_divide(X0,double_divide(X1,X2)),inverse(X2)),X1) = X0,
    inference(demodulation,[status(thm)],[c_1758,c_1459,c_1102]) ).

cnf(c_1762,plain,
    multiply(double_divide(X0,X1),X0) = inverse(X1),
    inference(superposition,[status(thm)],[c_1460,c_1759]) ).

cnf(c_1789,plain,
    multiply(double_divide(double_divide(X0,double_divide(X1,double_divide(X2,X3))),multiply(X3,X2)),X1) = X0,
    inference(superposition,[status(thm)],[c_68,c_1759]) ).

cnf(c_1917,plain,
    multiply(identity,double_divide(X0,double_divide(double_divide(X1,inverse(X0)),identity))) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_355,c_1101]) ).

cnf(c_1918,plain,
    double_divide(X0,multiply(inverse(X0),X1)) = inverse(X1),
    inference(demodulation,[status(thm)],[c_1917,c_1459,c_1102]) ).

cnf(c_1932,plain,
    double_divide(inverse(X0),X1) = multiply(inverse(X1),X0),
    inference(superposition,[status(thm)],[c_1918,c_1460]) ).

cnf(c_2309,plain,
    multiply(double_divide(X0,X1),identity) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_135,c_1532]) ).

cnf(c_2367,plain,
    inverse(double_divide(X0,X1)) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_1346,c_1762]) ).

cnf(c_2370,plain,
    multiply(c3,sP0_iProver_def) = inverse(inverse(sP1_iProver_def)),
    inference(superposition,[status(thm)],[c_1455,c_1762]) ).

cnf(c_2371,plain,
    multiply(sP2_iProver_def,a3) = inverse(inverse(sP3_iProver_def)),
    inference(superposition,[status(thm)],[c_1456,c_1762]) ).

cnf(c_2372,plain,
    multiply(X0,double_divide(X1,X0)) = inverse(X1),
    inference(superposition,[status(thm)],[c_1460,c_1762]) ).

cnf(c_3232,plain,
    multiply(c3,sP0_iProver_def) = sP1_iProver_def,
    inference(demodulation,[status(thm)],[c_2370,c_1126]) ).

cnf(c_3234,plain,
    double_divide(sP0_iProver_def,c3) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_3232,c_1127]) ).

cnf(c_3288,plain,
    double_divide(inverse(double_divide(X0,X1)),multiply(identity,multiply(identity,double_divide(X0,X1)))) = identity,
    inference(light_normalisation,[status(thm)],[c_1009,c_1524]) ).

cnf(c_3289,plain,
    double_divide(multiply(X0,X1),multiply(identity,multiply(identity,double_divide(X0,X1)))) = identity,
    inference(light_normalisation,[status(thm)],[c_3288,c_2367]) ).

cnf(c_3290,plain,
    double_divide(multiply(X0,X1),double_divide(X0,X1)) = identity,
    inference(demodulation,[status(thm)],[c_3289,c_1127,c_1524,c_2309,c_2367]) ).

cnf(c_3360,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_3290,c_1346]) ).

cnf(c_3366,plain,
    double_divide(identity,multiply(X0,X1)) = double_divide(X0,X1),
    inference(superposition,[status(thm)],[c_3290,c_1460]) ).

cnf(c_3590,plain,
    multiply(sP2_iProver_def,a3) = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_2371,c_1126]) ).

cnf(c_3730,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,multiply(identity,inverse(X0))),identity)),identity) = X1,
    inference(light_normalisation,[status(thm)],[c_350,c_1101,c_1102]) ).

cnf(c_3731,plain,
    multiply(X0,multiply(X1,inverse(X0))) = X1,
    inference(demodulation,[status(thm)],[c_3730,c_1102,c_3360]) ).

cnf(c_3740,plain,
    double_divide(inverse(X0),X1) = multiply(X0,inverse(X1)),
    inference(superposition,[status(thm)],[c_1762,c_3731]) ).

cnf(c_4400,plain,
    multiply(double_divide(identity,multiply(X0,X1)),X2) = multiply(X2,double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_3290,c_1789]) ).

cnf(c_4407,plain,
    multiply(double_divide(double_divide(X0,double_divide(X1,inverse(X2))),multiply(identity,X2)),X1) = X0,
    inference(superposition,[status(thm)],[c_51,c_1789]) ).

cnf(c_4496,plain,
    multiply(double_divide(X0,X1),X2) = multiply(X2,double_divide(X1,X0)),
    inference(light_normalisation,[status(thm)],[c_4400,c_3366]) ).

cnf(c_4823,plain,
    multiply(X0,double_divide(X1,double_divide(X2,double_divide(X0,inverse(X1))))) = X2,
    inference(demodulation,[status(thm)],[c_4407,c_1102,c_4496]) ).

cnf(c_4836,plain,
    multiply(a3,double_divide(sP0_iProver_def,double_divide(X0,b3))) = X0,
    inference(superposition,[status(thm)],[c_1453,c_4823]) ).

cnf(c_7001,plain,
    double_divide(double_divide(X0,X1),X1) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_2372,c_1127]) ).

cnf(c_7014,plain,
    double_divide(double_divide(X0,X1),X1) = X0,
    inference(light_normalisation,[status(thm)],[c_7001,c_1126]) ).

cnf(c_7111,plain,
    double_divide(X0,X1) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_7014,c_1346]) ).

cnf(c_7440,plain,
    double_divide(inverse(X0),inverse(X1)) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_1126,c_1932]) ).

cnf(c_7835,plain,
    multiply(a3,double_divide(sP0_iProver_def,double_divide(b3,X0))) = X0,
    inference(superposition,[status(thm)],[c_7111,c_4836]) ).

cnf(c_8338,plain,
    multiply(a3,double_divide(sP0_iProver_def,c3)) = inverse(sP2_iProver_def),
    inference(superposition,[status(thm)],[c_1454,c_7835]) ).

cnf(c_8348,plain,
    multiply(a3,inverse(sP1_iProver_def)) = inverse(sP2_iProver_def),
    inference(light_normalisation,[status(thm)],[c_8338,c_3234]) ).

cnf(c_8362,plain,
    double_divide(sP1_iProver_def,inverse(a3)) = inverse(sP2_iProver_def),
    inference(demodulation,[status(thm)],[c_8348,c_3740,c_7111]) ).

cnf(c_8364,plain,
    double_divide(inverse(a3),inverse(sP2_iProver_def)) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_8362,c_1346]) ).

cnf(c_8399,plain,
    sP1_iProver_def = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_8364,c_3590,c_7440]) ).

cnf(c_8400,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_8399,c_81]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.05/0.09  % Problem  : GRP571-1 : TPTP v8.1.2. Released v2.6.0.
% 0.05/0.10  % Command  : run_iprover %s %d THM
% 0.09/0.29  % Computer : n032.cluster.edu
% 0.09/0.29  % Model    : x86_64 x86_64
% 0.09/0.29  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.09/0.29  % Memory   : 8042.1875MB
% 0.09/0.29  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.09/0.29  % CPULimit : 300
% 0.09/0.29  % WCLimit  : 300
% 0.09/0.29  % DateTime : Thu May  2 23:52:09 EDT 2024
% 0.09/0.29  % CPUTime  : 
% 0.14/0.38  Running UEQ theorem proving
% 0.14/0.38  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule casc_24_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 3.90/1.00  % SZS status Started for theBenchmark.p
% 3.90/1.00  % SZS status Unsatisfiable for theBenchmark.p
% 3.90/1.00  
% 3.90/1.00  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.90/1.00  
% 3.90/1.00  ------  iProver source info
% 3.90/1.00  
% 3.90/1.00  git: date: 2024-05-02 19:28:25 +0000
% 3.90/1.00  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 3.90/1.00  git: non_committed_changes: false
% 3.90/1.00  
% 3.90/1.00  ------ Parsing...successful
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.90/1.00  
% 3.90/1.00  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.90/1.00  
% 3.90/1.00  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.90/1.00  ------ Proving...
% 3.90/1.00  ------ Problem Properties 
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  clauses                                 9
% 3.90/1.00  conjectures                             1
% 3.90/1.00  EPR                                     1
% 3.90/1.00  Horn                                    9
% 3.90/1.00  unary                                   9
% 3.90/1.00  binary                                  0
% 3.90/1.00  lits                                    9
% 3.90/1.00  lits eq                                 9
% 3.90/1.00  fd_pure                                 0
% 3.90/1.00  fd_pseudo                               0
% 3.90/1.00  fd_cond                                 0
% 3.90/1.00  fd_pseudo_cond                          0
% 3.90/1.00  AC symbols                              0
% 3.90/1.00  
% 3.90/1.00  ------ Input Options Time Limit: Unbounded
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  ------ 
% 3.90/1.00  Current options:
% 3.90/1.00  ------ 
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  ------ Proving...
% 3.90/1.00  
% 3.90/1.00  
% 3.90/1.00  % SZS status Unsatisfiable for theBenchmark.p
% 3.90/1.00  
% 3.90/1.00  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.90/1.00  
% 3.90/1.00  
%------------------------------------------------------------------------------