TSTP Solution File: GRP571-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP571-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:16 EDT 2022

% Result   : Unsatisfiable 1.71s 1.96s
% Output   : Refutation 1.71s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   23
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   66 (  66 unt;   0 nHn;   7 RR)
%            Number of literals    :   66 (  65 equ;   5 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :  129 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP571-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))),double_divide(identity,identity)) = B,
    file('GRP571-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP571-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP571-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP571-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6,6,6,6])]),
    [iquote('back_demod,1,demod,6,6,6,6,flip.1')] ).

cnf(18,plain,
    double_divide(double_divide(A,identity),double_divide(identity,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,11]),11]),
    [iquote('para_into,3.1.1.1.2.1,10.1.1,demod,11')] ).

cnf(19,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(B,double_divide(double_divide(A,double_divide(B,C)),double_divide(C,identity))),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2.1,3.1.1')] ).

cnf(20,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))) = double_divide(double_divide(identity,double_divide(B,double_divide(identity,identity))),double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(22,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(A,identity),
    inference(para_from,[status(thm),theory(equality)],[18,3]),
    [iquote('para_from,17.1.1,3.1.1.1.2.1')] ).

cnf(25,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[20]),22]),
    [iquote('back_demod,20,demod,22')] ).

cnf(29,plain,
    double_divide(double_divide(identity,A),double_divide(identity,identity)) = double_divide(double_divide(A,identity),identity),
    inference(para_into,[status(thm),theory(equality)],[22,18]),
    [iquote('para_into,21.1.1.1.2,17.1.1')] ).

cnf(31,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,11]),18])]),
    [iquote('para_into,21.1.1.1.2,10.1.1,demod,18,flip.1')] ).

cnf(32,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(identity,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[29])]),31]),
    [iquote('copy,29,flip.1,demod,31')] ).

cnf(39,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),31]),
    [iquote('back_demod,17,demod,31')] ).

cnf(42,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[32])]),39]),
    [iquote('copy,32,flip.1,demod,39')] ).

cnf(46,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(B,A),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,39]),31]),
    [iquote('para_into,25.1.1.2.1.2,38.1.1,demod,31')] ).

cnf(48,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,31]),31,39]),
    [iquote('para_into,25.1.1.2.1.2,30.1.1,demod,31,39')] ).

cnf(55,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,double_divide(C,identity))),C)) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[25,39]),
    [iquote('para_into,25.1.1.2.2,38.1.1')] ).

cnf(59,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[48])]),
    [iquote('copy,48,flip.1')] ).

cnf(77,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[59,42])]),
    [iquote('para_into,59.1.1,42.1.1,flip.1')] ).

cnf(84,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(identity,A)),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[59,25]),31]),
    [iquote('para_from,59.1.1,25.1.1.2.1.2,demod,31')] ).

cnf(87,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[46,46]),39,39,39]),
    [iquote('para_into,46.1.1.2.1,46.1.1,demod,39,39,39')] ).

cnf(90,plain,
    double_divide(double_divide(A,identity),double_divide(identity,double_divide(B,A))) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[46,59]),
    [iquote('para_into,46.1.1.2,59.1.1')] ).

cnf(96,plain,
    double_divide(identity,double_divide(double_divide(A,B),B)) = double_divide(A,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[77,25]),87]),
    [iquote('para_from,76.1.1,25.1.1.2.1.2,demod,87')] ).

cnf(149,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[87,87]),
    [iquote('para_into,86.1.1.1,86.1.1')] ).

cnf(152,plain,
    double_divide(double_divide(A,identity),double_divide(B,identity)) = double_divide(double_divide(A,B),identity),
    inference(para_into,[status(thm),theory(equality)],[87,46]),
    [iquote('para_into,86.1.1.1,46.1.1')] ).

cnf(161,plain,
    double_divide(double_divide(A,B),identity) = double_divide(double_divide(A,identity),double_divide(B,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[152])]),
    [iquote('copy,152,flip.1')] ).

cnf(186,plain,
    double_divide(double_divide(A,B),identity) = double_divide(identity,double_divide(B,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[96,87])]),
    [iquote('para_into,96.1.1.2.1,86.1.1,flip.1')] ).

cnf(204,plain,
    double_divide(identity,double_divide(A,B)) = double_divide(double_divide(B,identity),double_divide(A,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[161]),186]),
    [iquote('back_demod,161,demod,186')] ).

cnf(218,plain,
    double_divide(A,double_divide(identity,double_divide(double_divide(identity,A),B))) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[84]),186]),
    [iquote('back_demod,84,demod,186')] ).

cnf(226,plain,
    double_divide(identity,double_divide(double_divide(identity,double_divide(a3,b3)),c3)) != double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),186,186,186,186])]),
    [iquote('back_demod,12,demod,186,186,186,186,flip.1')] ).

cnf(234,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[96,87]),186,77])]),
    [iquote('para_from,96.1.1,86.1.1.1,demod,186,77,flip.1')] ).

cnf(236,plain,
    double_divide(A,double_divide(A,B)) = B,
    inference(para_into,[status(thm),theory(equality)],[234,149]),
    [iquote('para_into,233.1.1.1,148.1.1')] ).

cnf(237,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[234,87]),
    [iquote('para_into,233.1.1.1,86.1.1')] ).

cnf(273,plain,
    double_divide(A,double_divide(B,C)) = double_divide(identity,double_divide(double_divide(A,double_divide(C,identity)),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[55,234]),186]),
    [iquote('para_into,55.1.1.2.1,233.1.1,demod,186')] ).

cnf(274,plain,
    double_divide(A,double_divide(B,C)) = double_divide(identity,double_divide(B,double_divide(A,double_divide(C,identity)))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[55,87]),186]),
    [iquote('para_into,55.1.1.2.1,86.1.1,demod,186')] ).

cnf(280,plain,
    double_divide(identity,double_divide(A,double_divide(B,double_divide(C,identity)))) = double_divide(B,double_divide(A,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[274])]),
    [iquote('copy,274,flip.1')] ).

cnf(284,plain,
    double_divide(A,double_divide(identity,double_divide(B,double_divide(A,identity)))) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[90,234]),
    [iquote('para_into,90.1.1.1,233.1.1')] ).

cnf(288,plain,
    double_divide(A,double_divide(identity,double_divide(B,double_divide(identity,A)))) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[90,87]),
    [iquote('para_into,90.1.1.1,86.1.1')] ).

cnf(319,plain,
    double_divide(double_divide(identity,double_divide(A,B)),double_divide(A,identity)) = double_divide(identity,B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[204,149]),186])]),
    [iquote('para_into,204.1.1.2,148.1.1,demod,186,flip.1')] ).

cnf(324,plain,
    double_divide(identity,double_divide(double_divide(identity,A),B)) = double_divide(A,double_divide(identity,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[218,149]),186])]),
    [iquote('para_into,218.1.1.2.2,148.1.1,demod,186,flip.1')] ).

cnf(328,plain,
    double_divide(double_divide(a3,b3),double_divide(identity,c3)) != double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[226]),324]),
    [iquote('back_demod,226,demod,324')] ).

cnf(373,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(identity,double_divide(B,double_divide(A,identity))),
    inference(para_from,[status(thm),theory(equality)],[284,236]),
    [iquote('para_from,284.1.1,235.1.1.2')] ).

cnf(375,plain,
    double_divide(identity,double_divide(A,double_divide(B,identity))) = double_divide(B,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[373])]),
    [iquote('copy,373,flip.1')] ).

cnf(377,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(identity,double_divide(B,double_divide(identity,A))),
    inference(para_from,[status(thm),theory(equality)],[288,236]),
    [iquote('para_from,288.1.1,235.1.1.2')] ).

cnf(379,plain,
    double_divide(double_divide(A,identity),B) = double_divide(identity,double_divide(A,double_divide(identity,B))),
    inference(para_from,[status(thm),theory(equality)],[288,87]),
    [iquote('para_from,288.1.1,86.1.1.1')] ).

cnf(380,plain,
    double_divide(identity,double_divide(A,double_divide(identity,B))) = double_divide(B,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[377])]),
    [iquote('copy,377,flip.1')] ).

cnf(401,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(A,double_divide(identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[319,288]),149,236]),
    [iquote('para_into,319.1.1.1.2,288.1.1,demod,149,236')] ).

cnf(407,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(A,double_divide(B,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[401])]),
    [iquote('copy,401,flip.1')] ).

cnf(437,plain,
    double_divide(double_divide(double_divide(identity,A),B),double_divide(A,identity)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[407,87])]),
    [iquote('para_into,407.1.1,86.1.1,flip.1')] ).

cnf(459,plain,
    double_divide(double_divide(identity,A),B) = double_divide(identity,double_divide(A,double_divide(identity,B))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[437,149]),379])]),
    [iquote('para_from,437.1.1,148.1.1.2,demod,379,flip.1')] ).

cnf(616,plain,
    double_divide(double_divide(A,double_divide(B,identity)),C) = double_divide(identity,double_divide(double_divide(B,double_divide(A,identity)),double_divide(identity,C))),
    inference(para_into,[status(thm),theory(equality)],[459,375]),
    [iquote('para_into,458.1.1.1,375.1.1')] ).

cnf(620,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(B,identity)),double_divide(identity,C))) = double_divide(double_divide(B,double_divide(A,identity)),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[616])]),
    [iquote('copy,616,flip.1')] ).

cnf(862,plain,
    double_divide(identity,double_divide(double_divide(A,B),C)) = double_divide(A,double_divide(identity,double_divide(B,double_divide(identity,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[273,377]),234])]),
    [iquote('para_into,273.1.1.2,377.1.1,demod,234,flip.1')] ).

cnf(871,plain,
    double_divide(double_divide(A,B),C) = double_divide(C,double_divide(B,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[273,237]),862,379,236,236]),
    [iquote('para_into,273.1.1,237.1.1,demod,862,379,236,236')] ).

cnf(872,plain,
    double_divide(double_divide(double_divide(A,B),C),double_divide(B,A)) = C,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[273,87]),862,379,236,236])]),
    [iquote('para_into,273.1.1,86.1.1,demod,862,379,236,236,flip.1')] ).

cnf(899,plain,
    double_divide(double_divide(A,double_divide(B,identity)),C) = double_divide(B,double_divide(A,double_divide(identity,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[620]),862,236,379,236])]),
    [iquote('back_demod,620,demod,862,236,379,236,flip.1')] ).

cnf(1040,plain,
    double_divide(double_divide(A,B),C) = double_divide(double_divide(B,A),C),
    inference(para_from,[status(thm),theory(equality)],[872,149]),
    [iquote('para_from,872.1.1,148.1.1.2')] ).

cnf(1162,plain,
    double_divide(double_divide(double_divide(A,B),C),D) = double_divide(double_divide(C,double_divide(B,A)),D),
    inference(para_into,[status(thm),theory(equality)],[1040,1040]),
    [iquote('para_into,1040.1.1.1,1040.1.1')] ).

cnf(1167,plain,
    double_divide(double_divide(double_divide(A,B),C),D) = double_divide(A,double_divide(identity,double_divide(B,double_divide(C,double_divide(identity,D))))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[1040,274]),459,862,236,899])]),
    [iquote('para_into,1040.1.1.1,274.1.1,demod,459,862,236,899,flip.1')] ).

cnf(1170,plain,
    double_divide(double_divide(A,double_divide(B,C)),D) = double_divide(C,double_divide(identity,double_divide(B,double_divide(A,double_divide(identity,D))))),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1162])]),1167]),
    [iquote('copy,1162,flip.1,demod,1167')] ).

cnf(1249,plain,
    double_divide(identity,double_divide(A,double_divide(B,double_divide(C,D)))) = double_divide(identity,double_divide(D,double_divide(B,double_divide(C,A)))),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[280,380]),1170,149,379,236]),
    [iquote('para_from,280.1.1,380.1.1.2.2,demod,1170,149,379,236')] ).

cnf(1335,plain,
    double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))) != double_divide(identity,double_divide(c3,double_divide(identity,double_divide(b3,a3)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[328,871]),459])]),
    [iquote('para_into,328.1.1,871.1.1,demod,459,flip.1')] ).

cnf(1336,plain,
    $false,
    inference(binary,[status(thm)],[1335,1249]),
    [iquote('binary,1335.1,1249.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : GRP571-1 : TPTP v8.1.0. Released v2.6.0.
% 0.12/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n012.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:04:35 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.71/1.96  ----- Otter 3.3f, August 2004 -----
% 1.71/1.96  The process was started by sandbox on n012.cluster.edu,
% 1.71/1.96  Wed Jul 27 05:04:35 2022
% 1.71/1.96  The command was "./otter".  The process ID is 31798.
% 1.71/1.96  
% 1.71/1.96  set(prolog_style_variables).
% 1.71/1.96  set(auto).
% 1.71/1.96     dependent: set(auto1).
% 1.71/1.96     dependent: set(process_input).
% 1.71/1.96     dependent: clear(print_kept).
% 1.71/1.96     dependent: clear(print_new_demod).
% 1.71/1.96     dependent: clear(print_back_demod).
% 1.71/1.96     dependent: clear(print_back_sub).
% 1.71/1.96     dependent: set(control_memory).
% 1.71/1.96     dependent: assign(max_mem, 12000).
% 1.71/1.96     dependent: assign(pick_given_ratio, 4).
% 1.71/1.96     dependent: assign(stats_level, 1).
% 1.71/1.96     dependent: assign(max_seconds, 10800).
% 1.71/1.96  clear(print_given).
% 1.71/1.96  
% 1.71/1.96  list(usable).
% 1.71/1.96  0 [] A=A.
% 1.71/1.96  0 [] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))),double_divide(identity,identity))=B.
% 1.71/1.96  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.71/1.96  0 [] inverse(A)=double_divide(A,identity).
% 1.71/1.96  0 [] identity=double_divide(A,inverse(A)).
% 1.71/1.96  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.71/1.96  end_of_list.
% 1.71/1.96  
% 1.71/1.96  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.71/1.96  
% 1.71/1.96  All clauses are units, and equality is present; the
% 1.71/1.96  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.71/1.96  
% 1.71/1.96     dependent: set(knuth_bendix).
% 1.71/1.96     dependent: set(anl_eq).
% 1.71/1.96     dependent: set(para_from).
% 1.71/1.96     dependent: set(para_into).
% 1.71/1.96     dependent: clear(para_from_right).
% 1.71/1.96     dependent: clear(para_into_right).
% 1.71/1.96     dependent: set(para_from_vars).
% 1.71/1.96     dependent: set(eq_units_both_ways).
% 1.71/1.96     dependent: set(dynamic_demod_all).
% 1.71/1.96     dependent: set(dynamic_demod).
% 1.71/1.96     dependent: set(order_eq).
% 1.71/1.96     dependent: set(back_demod).
% 1.71/1.96     dependent: set(lrpo).
% 1.71/1.96  
% 1.71/1.96  ------------> process usable:
% 1.71/1.96  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.71/1.96  
% 1.71/1.96  ------------> process sos:
% 1.71/1.96  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.71/1.96  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))),double_divide(identity,identity))=B.
% 1.71/1.96  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))),double_divide(identity,identity))=B.
% 1.71/1.96  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.71/1.96  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.71/1.96  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.71/1.96  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.71/1.96  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.71/1.96  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.71/1.96    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.71/1.96  >>>> Starting back demodulation with 4.
% 1.71/1.96  >>>> Starting back demodulation with 6.
% 1.71/1.96      >> back demodulating 1 with 6.
% 1.71/1.96  >>>> Starting back demodulation with 8.
% 1.71/1.96  >>>> Starting back demodulation with 11.
% 1.71/1.96  
% 1.71/1.96  ======= end of input processing =======
% 1.71/1.96  
% 1.71/1.96  =========== start of search ===========
% 1.71/1.96  
% 1.71/1.96  -------- PROOF -------- 
% 1.71/1.96  
% 1.71/1.96  ----> UNIT CONFLICT at   0.09 sec ----> 1336 [binary,1335.1,1249.1] $F.
% 1.71/1.96  
% 1.71/1.96  Length of proof is 60.  Level of proof is 22.
% 1.71/1.96  
% 1.71/1.96  ---------------- PROOF ----------------
% 1.71/1.96  % SZS status Unsatisfiable
% 1.71/1.96  % SZS output start Refutation
% See solution above
% 1.71/1.96  ------------ end of proof -------------
% 1.71/1.96  
% 1.71/1.96  
% 1.71/1.96  Search stopped by max_proofs option.
% 1.71/1.96  
% 1.71/1.96  
% 1.71/1.96  Search stopped by max_proofs option.
% 1.71/1.96  
% 1.71/1.96  ============ end of search ============
% 1.71/1.96  
% 1.71/1.96  -------------- statistics -------------
% 1.71/1.96  clauses given                 86
% 1.71/1.96  clauses generated           4389
% 1.71/1.96  clauses kept                 864
% 1.71/1.96  clauses forward subsumed    4442
% 1.71/1.96  clauses back subsumed         28
% 1.71/1.96  Kbytes malloced             2929
% 1.71/1.96  
% 1.71/1.96  ----------- times (seconds) -----------
% 1.71/1.96  user CPU time          0.09          (0 hr, 0 min, 0 sec)
% 1.71/1.96  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.71/1.96  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.71/1.96  
% 1.71/1.96  That finishes the proof of the theorem.
% 1.71/1.96  
% 1.71/1.96  Process 31798 finished Wed Jul 27 05:04:37 2022
% 1.71/1.96  Otter interrupted
% 1.71/1.96  PROOF FOUND
%------------------------------------------------------------------------------