TSTP Solution File: GRP570-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP570-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:41 EDT 2022

% Result   : Unsatisfiable 0.65s 1.00s
% Output   : Refutation 0.65s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP570-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n012.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Mon Jun 13 21:58:55 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.65/1.00  *** allocated 10000 integers for termspace/termends
% 0.65/1.00  *** allocated 10000 integers for clauses
% 0.65/1.00  *** allocated 10000 integers for justifications
% 0.65/1.00  Bliksem 1.12
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  Automatic Strategy Selection
% 0.65/1.00  
% 0.65/1.00  Clauses:
% 0.65/1.00  [
% 0.65/1.00     [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), 'double_divide'( identity, identity ) ), Y ) ],
% 0.65/1.00     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.65/1.00    identity ) ) ],
% 0.65/1.00     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.65/1.00     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.65/1.00     [ ~( =( multiply( identity, a2 ), a2 ) ) ]
% 0.65/1.00  ] .
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  percentage equality = 1.000000, percentage horn = 1.000000
% 0.65/1.00  This is a pure equality problem
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  Options Used:
% 0.65/1.00  
% 0.65/1.00  useres =            1
% 0.65/1.00  useparamod =        1
% 0.65/1.00  useeqrefl =         1
% 0.65/1.00  useeqfact =         1
% 0.65/1.00  usefactor =         1
% 0.65/1.00  usesimpsplitting =  0
% 0.65/1.00  usesimpdemod =      5
% 0.65/1.00  usesimpres =        3
% 0.65/1.00  
% 0.65/1.00  resimpinuse      =  1000
% 0.65/1.00  resimpclauses =     20000
% 0.65/1.00  substype =          eqrewr
% 0.65/1.00  backwardsubs =      1
% 0.65/1.00  selectoldest =      5
% 0.65/1.00  
% 0.65/1.00  litorderings [0] =  split
% 0.65/1.00  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.65/1.00  
% 0.65/1.00  termordering =      kbo
% 0.65/1.00  
% 0.65/1.00  litapriori =        0
% 0.65/1.00  termapriori =       1
% 0.65/1.00  litaposteriori =    0
% 0.65/1.00  termaposteriori =   0
% 0.65/1.00  demodaposteriori =  0
% 0.65/1.00  ordereqreflfact =   0
% 0.65/1.00  
% 0.65/1.00  litselect =         negord
% 0.65/1.00  
% 0.65/1.00  maxweight =         15
% 0.65/1.00  maxdepth =          30000
% 0.65/1.00  maxlength =         115
% 0.65/1.00  maxnrvars =         195
% 0.65/1.00  excuselevel =       1
% 0.65/1.00  increasemaxweight = 1
% 0.65/1.00  
% 0.65/1.00  maxselected =       10000000
% 0.65/1.00  maxnrclauses =      10000000
% 0.65/1.00  
% 0.65/1.00  showgenerated =    0
% 0.65/1.00  showkept =         0
% 0.65/1.00  showselected =     0
% 0.65/1.00  showdeleted =      0
% 0.65/1.00  showresimp =       1
% 0.65/1.00  showstatus =       2000
% 0.65/1.00  
% 0.65/1.00  prologoutput =     1
% 0.65/1.00  nrgoals =          5000000
% 0.65/1.00  totalproof =       1
% 0.65/1.00  
% 0.65/1.00  Symbols occurring in the translation:
% 0.65/1.00  
% 0.65/1.00  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.65/1.00  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.65/1.00  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.65/1.00  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.65/1.00  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.65/1.00  'double_divide'  [42, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.65/1.00  identity  [43, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 0.65/1.00  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.65/1.00  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.65/1.00  a2  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  Starting Search:
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  Bliksems!, er is een bewijs:
% 0.65/1.00  % SZS status Unsatisfiable
% 0.65/1.00  % SZS output start Refutation
% 0.65/1.00  
% 0.65/1.00  clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.65/1.00    multiply( X, Y ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 12, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    inverse( Y ), inverse( inverse( X ) ) ) ), inverse( identity ) ), Y ) ]
% 0.65/1.00     )
% 0.65/1.00  .
% 0.65/1.00  clause( 13, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 16, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X )
% 0.65/1.00     ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 23, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.65/1.00    'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ), 
% 0.65/1.00    inverse( X ) ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 37, [ =( multiply( inverse( identity ), X ), X ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 44, [ =( inverse( identity ), identity ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 45, [ =( inverse( inverse( X ) ), X ) ] )
% 0.65/1.00  .
% 0.65/1.00  clause( 55, [] )
% 0.65/1.00  .
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  % SZS output end Refutation
% 0.65/1.00  found a proof!
% 0.65/1.00  
% 0.65/1.00  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.65/1.00  
% 0.65/1.00  initialclauses(
% 0.65/1.00  [ clause( 57, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.65/1.00  , clause( 58, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.65/1.00     ), identity ) ) ] )
% 0.65/1.00  , clause( 59, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.65/1.00  , clause( 60, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.65/1.00  , clause( 61, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.65/1.00  ] ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.65/1.00  , clause( 57, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.65/1.00    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 64, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.65/1.00    multiply( X, Y ) ) ] )
% 0.65/1.00  , clause( 58, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.65/1.00     ), identity ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.65/1.00    multiply( X, Y ) ) ] )
% 0.65/1.00  , clause( 64, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.65/1.00    multiply( X, Y ) ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.65/1.00     )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 67, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , clause( 59, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , clause( 67, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 71, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  , clause( 60, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  , clause( 71, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.65/1.00  , clause( 61, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.65/1.00  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 79, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.65/1.00    multiply( X, Y ) ) ] )
% 0.65/1.00  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.65/1.00    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.65/1.00  , clause( 79, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.65/1.00     )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 82, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 85, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.65/1.00  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  , 0, clause( 82, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.65/1.00     ) ] )
% 0.65/1.00  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.65/1.00    :=( Y, inverse( X ) )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.65/1.00  , clause( 85, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 88, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 91, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 88, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.65/1.00     ) ] )
% 0.65/1.00  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.65/1.00    :=( Y, identity )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , clause( 91, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 97, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), inverse( identity ) ), Y ) ] )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.65/1.00  , 0, 13, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X
% 0.65/1.00    , X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 99, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 97, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( Z, 
% 0.65/1.00    identity ) ) ), inverse( identity ) ), Y ) ] )
% 0.65/1.00  , 0, 10, substitution( 0, [ :=( X, Z )] ), substitution( 1, [ :=( X, X ), 
% 0.65/1.00    :=( Y, Y ), :=( Z, Z )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , clause( 99, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.65/1.00    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 102, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.65/1.00  , clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 103, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.65/1.00  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , 0, clause( 102, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.65/1.00  , 0, 3, substitution( 0, [ :=( X, a2 )] ), substitution( 1, [] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 104, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.65/1.00  , clause( 103, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.65/1.00  , clause( 104, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.65/1.00  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 106, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 108, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    'double_divide'( X, identity ), inverse( inverse( Y ) ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  , 0, clause( 106, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.65/1.00    'double_divide'( 'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( 
% 0.65/1.00    Z ) ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , 0, 8, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, Y ), 
% 0.65/1.00    :=( Y, X ), :=( Z, inverse( Y ) )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 109, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    inverse( X ), inverse( inverse( Y ) ) ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 108, [ =( X, 'double_divide'( 'double_divide'( Y, 
% 0.65/1.00    'double_divide'( 'double_divide'( X, identity ), inverse( inverse( Y ) )
% 0.65/1.00     ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.65/1.00    :=( Y, Y )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 110, [ =( 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    inverse( X ), inverse( inverse( Y ) ) ) ), inverse( identity ) ), X ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 109, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    inverse( X ), inverse( inverse( Y ) ) ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 12, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    inverse( Y ), inverse( inverse( X ) ) ) ), inverse( identity ) ), Y ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 110, [ =( 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    inverse( X ), inverse( inverse( Y ) ) ) ), inverse( identity ) ), X ) ]
% 0.65/1.00     )
% 0.65/1.00  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.65/1.00     )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 112, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( Z ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 113, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 112, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.65/1.00    'double_divide'( 'double_divide'( Y, 'double_divide'( X, Z ) ), inverse( 
% 0.65/1.00    Z ) ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , 0, 8, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, Y ), 
% 0.65/1.00    :=( Y, X ), :=( Z, identity )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 114, [ =( 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ), X ) ] )
% 0.65/1.00  , clause( 113, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 13, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , clause( 114, [ =( 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.65/1.00    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ), X ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.65/1.00     )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 116, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    inverse( Y ), inverse( inverse( X ) ) ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , clause( 12, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    inverse( Y ), inverse( inverse( X ) ) ) ), inverse( identity ) ), Y ) ]
% 0.65/1.00     )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 118, [ =( X, 'double_divide'( 'double_divide'( X, identity ), 
% 0.65/1.00    inverse( identity ) ) ) ] )
% 0.65/1.00  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.65/1.00  , 0, clause( 116, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.65/1.00    'double_divide'( inverse( Y ), inverse( inverse( X ) ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , 0, 5, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.65/1.00    :=( X, X ), :=( Y, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 119, [ =( X, 'double_divide'( inverse( X ), inverse( identity ) ) )
% 0.65/1.00     ] )
% 0.65/1.00  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.65/1.00  , 0, clause( 118, [ =( X, 'double_divide'( 'double_divide'( X, identity ), 
% 0.65/1.00    inverse( identity ) ) ) ] )
% 0.65/1.00  , 0, 3, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.65/1.00    ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 120, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X )
% 0.65/1.00     ] )
% 0.65/1.00  , clause( 119, [ =( X, 'double_divide'( inverse( X ), inverse( identity ) )
% 0.65/1.00     ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 16, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X )
% 0.65/1.00     ] )
% 0.65/1.00  , clause( 120, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X
% 0.65/1.00     ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 122, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ) ) ] )
% 0.65/1.00  , clause( 13, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 123, [ =( inverse( X ), 'double_divide'( 'double_divide'( identity
% 0.65/1.00    , 'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 16, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X
% 0.65/1.00     ) ] )
% 0.65/1.00  , 0, clause( 122, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.65/1.00    'double_divide'( 'double_divide'( Y, inverse( X ) ), inverse( identity )
% 0.65/1.00     ) ), inverse( identity ) ) ) ] )
% 0.65/1.00  , 0, 7, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, 
% 0.65/1.00    identity ), :=( Y, inverse( X ) )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 124, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.65/1.00    'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ), 
% 0.65/1.00    inverse( X ) ) ] )
% 0.65/1.00  , clause( 123, [ =( inverse( X ), 'double_divide'( 'double_divide'( 
% 0.65/1.00    identity, 'double_divide'( X, inverse( identity ) ) ), inverse( identity
% 0.65/1.00     ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 23, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.65/1.00    'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ), 
% 0.65/1.00    inverse( X ) ) ] )
% 0.65/1.00  , clause( 124, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.65/1.00    'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ), 
% 0.65/1.00    inverse( X ) ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 125, [ =( inverse( X ), 'double_divide'( 'double_divide'( identity
% 0.65/1.00    , 'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , clause( 23, [ =( 'double_divide'( 'double_divide'( identity, 
% 0.65/1.00    'double_divide'( X, inverse( identity ) ) ), inverse( identity ) ), 
% 0.65/1.00    inverse( X ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 128, [ =( inverse( 'double_divide'( X, inverse( identity ) ) ), X )
% 0.65/1.00     ] )
% 0.65/1.00  , clause( 13, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.65/1.00    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.65/1.00    identity ) ), Y ) ] )
% 0.65/1.00  , 0, clause( 125, [ =( inverse( X ), 'double_divide'( 'double_divide'( 
% 0.65/1.00    identity, 'double_divide'( X, inverse( identity ) ) ), inverse( identity
% 0.65/1.00     ) ) ) ] )
% 0.65/1.00  , 0, 6, substitution( 0, [ :=( X, identity ), :=( Y, X )] ), substitution( 
% 0.65/1.00    1, [ :=( X, 'double_divide'( X, inverse( identity ) ) )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 132, [ =( multiply( inverse( identity ), X ), X ) ] )
% 0.65/1.00  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.65/1.00     )
% 0.65/1.00  , 0, clause( 128, [ =( inverse( 'double_divide'( X, inverse( identity ) ) )
% 0.65/1.00    , X ) ] )
% 0.65/1.00  , 0, 1, substitution( 0, [ :=( X, inverse( identity ) ), :=( Y, X )] ), 
% 0.65/1.00    substitution( 1, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 37, [ =( multiply( inverse( identity ), X ), X ) ] )
% 0.65/1.00  , clause( 132, [ =( multiply( inverse( identity ), X ), X ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 134, [ =( X, multiply( inverse( identity ), X ) ) ] )
% 0.65/1.00  , clause( 37, [ =( multiply( inverse( identity ), X ), X ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 136, [ =( identity, inverse( identity ) ) ] )
% 0.65/1.00  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.65/1.00  , 0, clause( 134, [ =( X, multiply( inverse( identity ), X ) ) ] )
% 0.65/1.00  , 0, 2, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.65/1.00    identity )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 137, [ =( inverse( identity ), identity ) ] )
% 0.65/1.00  , clause( 136, [ =( identity, inverse( identity ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 44, [ =( inverse( identity ), identity ) ] )
% 0.65/1.00  , clause( 137, [ =( inverse( identity ), identity ) ] )
% 0.65/1.00  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 139, [ =( X, multiply( inverse( identity ), X ) ) ] )
% 0.65/1.00  , clause( 37, [ =( multiply( inverse( identity ), X ), X ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 141, [ =( X, multiply( identity, X ) ) ] )
% 0.65/1.00  , clause( 44, [ =( inverse( identity ), identity ) ] )
% 0.65/1.00  , 0, clause( 139, [ =( X, multiply( inverse( identity ), X ) ) ] )
% 0.65/1.00  , 0, 3, substitution( 0, [] ), substitution( 1, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  paramod(
% 0.65/1.00  clause( 142, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , 0, clause( 141, [ =( X, multiply( identity, X ) ) ] )
% 0.65/1.00  , 0, 2, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.65/1.00    ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 143, [ =( inverse( inverse( X ) ), X ) ] )
% 0.65/1.00  , clause( 142, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 45, [ =( inverse( inverse( X ) ), X ) ] )
% 0.65/1.00  , clause( 143, [ =( inverse( inverse( X ) ), X ) ] )
% 0.65/1.00  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 144, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , clause( 45, [ =( inverse( inverse( X ) ), X ) ] )
% 0.65/1.00  , 0, substitution( 0, [ :=( X, X )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  eqswap(
% 0.65/1.00  clause( 145, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.65/1.00  , clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  resolution(
% 0.65/1.00  clause( 146, [] )
% 0.65/1.00  , clause( 145, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.65/1.00  , 0, clause( 144, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.65/1.00  , 0, substitution( 0, [] ), substitution( 1, [ :=( X, a2 )] )).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  subsumption(
% 0.65/1.00  clause( 55, [] )
% 0.65/1.00  , clause( 146, [] )
% 0.65/1.00  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  end.
% 0.65/1.00  
% 0.65/1.00  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.65/1.00  
% 0.65/1.00  Memory use:
% 0.65/1.00  
% 0.65/1.00  space for terms:        666
% 0.65/1.00  space for clauses:      6379
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  clauses generated:      203
% 0.65/1.00  clauses kept:           56
% 0.65/1.00  clauses selected:       23
% 0.65/1.00  clauses deleted:        6
% 0.65/1.00  clauses inuse deleted:  0
% 0.65/1.00  
% 0.65/1.00  subsentry:          234
% 0.65/1.00  literals s-matched: 92
% 0.65/1.00  literals matched:   92
% 0.65/1.00  full subsumption:   0
% 0.65/1.00  
% 0.65/1.00  checksum:           1903623651
% 0.65/1.00  
% 0.65/1.00  
% 0.65/1.00  Bliksem ended
%------------------------------------------------------------------------------