TSTP Solution File: GRP568-1 by MaedMax---1.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : MaedMax---1.4
% Problem  : GRP568-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp
% Command  : run_maedmax %d %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Tue Jul 26 07:02:56 EDT 2022

% Result   : Unsatisfiable 0.36s 0.62s
% Output   : CNFRefutation 0.36s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   58 (  58 unt;   0 nHn;  11 RR)
%            Number of literals    :   58 (  57 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   5 con; 0-2 aty)
%            Number of variables   :   78 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(eq_0,axiom,
    A = double_divide(double_divide(B,double_divide(double_divide(A,double_divide(B,C)),double_divide(identity,C))),double_divide(identity,identity)),
    file('/tmp/MaedMax_9484') ).

cnf(eq_1,axiom,
    double_divide(double_divide(A,B),identity) = multiply(B,A),
    file('/tmp/MaedMax_9484') ).

cnf(eq_2,axiom,
    double_divide(A,identity) = inverse(A),
    file('/tmp/MaedMax_9484') ).

cnf(eq_3,axiom,
    double_divide(A,inverse(A)) = identity,
    file('/tmp/MaedMax_9484') ).

cnf(eq_4,negated_conjecture,
    multiply(a,b) != multiply(b,a),
    file('/tmp/MaedMax_9484') ).

cnf(eq_5,plain,
    A = double_divide(double_divide(B,double_divide(double_divide(A,double_divide(B,C)),double_divide(identity,C))),inverse(identity)),
    inference(rw,[status(thm)],[eq_0,eq_2]) ).

cnf(eq_6,plain,
    multiply(A,B) = inverse(double_divide(B,A)),
    inference(rw,[status(thm)],[eq_1,eq_2]) ).

cnf(eq_7,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(B,double_divide(double_divide(A,double_divide(B,C)),double_divide(identity,C))),
    inference(cp,[status(thm)],[eq_0,eq_0]) ).

cnf(eq_8,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))) = double_divide(double_divide(identity,double_divide(B,double_divide(identity,identity))),double_divide(identity,identity)),
    eq_7 ).

cnf(eq_9,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))) = double_divide(double_divide(identity,double_divide(B,inverse(identity))),inverse(identity)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_8,eq_2]),eq_2]) ).

cnf(eq_10,plain,
    double_divide(double_divide(A,double_divide(double_divide(x101,identity),double_divide(identity,inverse(A)))),inverse(identity)) = x101,
    inference(cp,[status(thm)],[eq_3,eq_5]) ).

cnf(eq_11,plain,
    double_divide(double_divide(x100,double_divide(double_divide(x101,double_divide(x100,inverse(identity))),identity)),inverse(identity)) = x101,
    inference(cp,[status(thm)],[eq_3,eq_5]) ).

cnf(eq_12,plain,
    double_divide(double_divide(x100,double_divide(double_divide(x101,double_divide(x100,identity)),inverse(identity))),inverse(identity)) = x101,
    inference(cp,[status(thm)],[eq_2,eq_5]) ).

cnf(eq_13,plain,
    A = double_divide(double_divide(B,inverse(double_divide(A,double_divide(B,inverse(identity))))),inverse(identity)),
    inference(rw,[status(thm)],[eq_11,eq_2]) ).

cnf(eq_14,plain,
    A = double_divide(double_divide(B,double_divide(double_divide(A,inverse(B)),inverse(identity))),inverse(identity)),
    inference(rw,[status(thm)],[eq_12,eq_2]) ).

cnf(eq_15,plain,
    A = double_divide(double_divide(B,double_divide(inverse(A),double_divide(identity,inverse(B)))),inverse(identity)),
    inference(rw,[status(thm)],[eq_10,eq_2]) ).

cnf(eq_16,plain,
    double_divide(double_divide(double_divide(identity,double_divide(B,inverse(identity))),inverse(identity)),inverse(identity)) = B,
    inference(cp,[status(thm)],[eq_9,eq_5]) ).

cnf(eq_17,plain,
    double_divide(double_divide(A,double_divide(identity,inverse(identity))),inverse(identity)) = A,
    inference(cp,[status(thm)],[eq_3,eq_14]) ).

cnf(eq_18,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))),inverse(identity))),inverse(identity)) = double_divide(identity,double_divide(B,inverse(identity))),
    inference(cp,[status(thm)],[eq_9,eq_14]) ).

cnf(eq_19,plain,
    double_divide(double_divide(identity,double_divide(inverse(x101),identity)),inverse(identity)) = x101,
    inference(cp,[status(thm)],[eq_3,eq_15]) ).

cnf(eq_20,plain,
    A = double_divide(inverse(A),inverse(identity)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_17,eq_3]),eq_2]) ).

cnf(eq_21,plain,
    double_divide(double_divide(identity,A),inverse(identity)) = double_divide(identity,double_divide(A,inverse(identity))),
    inference(rw,[status(thm)],[eq_18,eq_5]) ).

cnf(eq_22,plain,
    A = double_divide(double_divide(identity,inverse(inverse(A))),inverse(identity)),
    inference(rw,[status(thm)],[eq_19,eq_2]) ).

cnf(eq_23,plain,
    A = double_divide(double_divide(double_divide(identity,double_divide(A,inverse(identity))),inverse(identity)),inverse(identity)),
    eq_16 ).

cnf(eq_24,plain,
    A = double_divide(identity,double_divide(double_divide(double_divide(A,inverse(identity)),inverse(identity)),inverse(identity))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_23,eq_21]),eq_21]) ).

cnf(eq_25,plain,
    A = double_divide(identity,inverse(A)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_22,eq_21]),eq_20]) ).

cnf(eq_26,plain,
    double_divide(double_divide(double_divide(A,double_divide(B,inverse(identity))),A),inverse(identity)) = B,
    inference(cp,[status(thm)],[eq_13,eq_14]) ).

cnf(eq_27,plain,
    double_divide(double_divide(identity,double_divide(A,inverse(identity))),inverse(identity)) = inverse(A),
    inference(cp,[status(thm)],[eq_20,eq_14]) ).

cnf(eq_28,plain,
    double_divide(double_divide(double_divide(identity,A),inverse(double_divide(x101,double_divide(identity,double_divide(A,inverse(identity)))))),inverse(identity)) = x101,
    inference(cp,[status(thm)],[eq_21,eq_13]) ).

cnf(eq_29,plain,
    double_divide(inverse(identity),inverse(identity)) = double_divide(identity,double_divide(identity,inverse(identity))),
    inference(cp,[status(thm)],[eq_2,eq_21]) ).

cnf(eq_30,plain,
    identity = inverse(identity),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_29,eq_20]),eq_3]),eq_2]) ).

cnf(eq_31,plain,
    A = double_divide(double_divide(double_divide(identity,B),inverse(double_divide(A,double_divide(identity,double_divide(B,inverse(identity)))))),inverse(identity)),
    eq_28 ).

cnf(eq_32,plain,
    A = double_divide(double_divide(double_divide(B,double_divide(A,inverse(identity))),B),inverse(identity)),
    eq_26 ).

cnf(eq_33,plain,
    double_divide(identity,double_divide(double_divide(A,inverse(identity)),inverse(identity))) = inverse(A),
    inference(rw,[status(thm)],[eq_27,eq_21]) ).

cnf(eq_34,plain,
    double_divide(inverse(x100),identity) = x100,
    inference(cp,[status(thm)],[eq_30,eq_20]) ).

cnf(eq_35,plain,
    inverse(A) = multiply(inverse(A),identity),
    inference(cp,[status(thm)],[eq_25,eq_6]) ).

cnf(eq_36,plain,
    A = inverse(double_divide(A,inverse(identity))),
    inference(cp,[status(thm)],[eq_24,eq_33]) ).

cnf(eq_37,plain,
    double_divide(identity,double_divide(double_divide(x100,identity),inverse(identity))) = inverse(x100),
    inference(cp,[status(thm)],[eq_30,eq_33]) ).

cnf(eq_38,plain,
    A = multiply(inverse(identity),A),
    inference(rw,[status(thm)],[eq_36,eq_6]) ).

cnf(eq_39,plain,
    multiply(inverse(A),identity) = inverse(A),
    eq_35 ).

cnf(eq_40,plain,
    A = inverse(inverse(A)),
    inference(rw,[status(thm)],[eq_34,eq_2]) ).

cnf(eq_41,plain,
    double_divide(identity,A) = inverse(A),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_37,eq_2]),eq_20]) ).

cnf(eq_42,plain,
    A = multiply(identity,A),
    inference(rw,[status(thm)],[eq_38,eq_30]) ).

cnf(eq_43,plain,
    A = multiply(multiply(B,A),inverse(B)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_31,eq_41]),eq_30]),eq_30]),eq_2]),eq_41]),eq_40]),eq_6]),eq_2]),eq_6]) ).

cnf(eq_44,plain,
    A = multiply(B,double_divide(B,inverse(A))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_32,eq_30]),eq_30]),eq_2]),eq_2]),eq_6]) ).

cnf(eq_45,plain,
    multiply(A,identity) = inverse(inverse(A)),
    inference(cp,[status(thm)],[eq_40,eq_39]) ).

cnf(eq_46,plain,
    inverse(multiply(A,B)) = double_divide(B,A),
    inference(cp,[status(thm)],[eq_6,eq_40]) ).

cnf(eq_47,plain,
    double_divide(A,B) = inverse(multiply(B,A)),
    eq_46 ).

cnf(eq_48,plain,
    A = multiply(A,identity),
    inference(rw,[status(thm)],[eq_45,eq_40]) ).

cnf(eq_49,plain,
    A = multiply(inverse(multiply(inverse(B),inverse(multiply(inverse(multiply(B,C)),A)))),C),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_5,eq_47]),eq_47]),eq_30]),eq_47]),eq_48]),eq_47]),eq_47]),eq_47]),eq_42]),eq_40]) ).

cnf(eq_50,plain,
    A = multiply(B,inverse(multiply(inverse(A),B))),
    inference(rw,[status(thm)],[eq_44,eq_47]) ).

cnf(eq_51,plain,
    multiply(A,inverse(multiply(B,A))) = inverse(B),
    inference(cp,[status(thm)],[eq_43,eq_43]) ).

cnf(eq_52,plain,
    multiply(inverse(multiply(x100,x101)),x101) = inverse(x100),
    inference(cp,[status(thm)],[eq_50,eq_49]) ).

cnf(eq_53,plain,
    multiply(inverse(multiply(A,B)),B) = inverse(A),
    eq_52 ).

cnf(eq_54,plain,
    multiply(B,inverse(inverse(A))) = inverse(inverse(multiply(A,B))),
    inference(cp,[status(thm)],[eq_53,eq_51]) ).

cnf(eq_55,plain,
    multiply(A,B) = multiply(B,A),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_54,eq_40]),eq_40]) ).

cnf(eq_56,negated_conjecture,
    multiply(b,a) != multiply(b,a),
    inference(cp,[status(thm)],[eq_55,eq_4]) ).

cnf(bot,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[eq_56]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.10  % Problem  : GRP568-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.08/0.11  % Command  : run_maedmax %d %s
% 0.11/0.29  % Computer : n025.cluster.edu
% 0.11/0.29  % Model    : x86_64 x86_64
% 0.11/0.29  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.29  % Memory   : 8042.1875MB
% 0.11/0.29  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.29  % CPULimit : 300
% 0.11/0.29  % WCLimit  : 300
% 0.11/0.29  % DateTime : Tue Jul 26 04:24:29 EDT 2022
% 0.11/0.30  % CPUTime  : 
% 0.36/0.62  % SZS status Unsatisfiable
% 0.36/0.62  % SZS output start CNFRefutation for /tmp/MaedMax_9484
% See solution above
% 0.36/0.62  
%------------------------------------------------------------------------------