TSTP Solution File: GRP567-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP567-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:16 EDT 2022

% Result   : Unsatisfiable 1.72s 1.95s
% Output   : Refutation 1.72s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   22
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   67 (  67 unt;   0 nHn;   7 RR)
%            Number of literals    :   67 (  66 equ;   5 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :  133 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP567-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))),double_divide(identity,identity)) = B,
    file('GRP567-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP567-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP567-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP567-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6,6,6,6])]),
    [iquote('back_demod,1,demod,6,6,6,6,flip.1')] ).

cnf(18,plain,
    double_divide(double_divide(A,identity),double_divide(identity,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,11]),11]),
    [iquote('para_into,3.1.1.1.2.1,10.1.1,demod,11')] ).

cnf(19,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(B,double_divide(double_divide(A,double_divide(B,C)),double_divide(identity,C))),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2.1,3.1.1')] ).

cnf(22,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))) = double_divide(double_divide(identity,double_divide(B,double_divide(identity,identity))),double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(24,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),double_divide(identity,identity)) = double_divide(A,identity),
    inference(para_from,[status(thm),theory(equality)],[18,3]),
    [iquote('para_from,17.1.1,3.1.1.1.2.1')] ).

cnf(27,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[22]),24]),
    [iquote('back_demod,22,demod,24')] ).

cnf(31,plain,
    double_divide(double_divide(identity,A),double_divide(identity,identity)) = double_divide(double_divide(A,identity),identity),
    inference(para_into,[status(thm),theory(equality)],[24,18]),
    [iquote('para_into,23.1.1.1.2,17.1.1')] ).

cnf(33,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,11]),18])]),
    [iquote('para_into,23.1.1.1.2,10.1.1,demod,18,flip.1')] ).

cnf(34,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(identity,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[31])]),33]),
    [iquote('copy,31,flip.1,demod,33')] ).

cnf(43,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),33]),
    [iquote('back_demod,17,demod,33')] ).

cnf(46,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[34])]),43]),
    [iquote('copy,34,flip.1,demod,43')] ).

cnf(50,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(B,A),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,43]),33]),
    [iquote('para_into,27.1.1.2.1.2,42.1.1,demod,33')] ).

cnf(52,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,33]),33,43]),
    [iquote('para_into,27.1.1.2.1.2,32.1.1,demod,33,43')] ).

cnf(53,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(C,identity)),double_divide(identity,double_divide(double_divide(C,double_divide(A,D)),double_divide(identity,D))))) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[27,27]),
    [iquote('para_into,27.1.1.2.1.2,27.1.1')] ).

cnf(61,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,double_divide(double_divide(C,double_divide(identity,D)),double_divide(identity,D)))),double_divide(C,identity))) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[27,27]),
    [iquote('para_into,27.1.1.2.2,27.1.1')] ).

cnf(63,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[52])]),
    [iquote('copy,52,flip.1')] ).

cnf(65,plain,
    double_divide(double_divide(A,double_divide(identity,B)),double_divide(identity,B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[46,27]),43])]),
    [iquote('para_into,46.1.1.1,27.1.1,demod,43,flip.1')] ).

cnf(66,plain,
    double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(C,identity))) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[61]),65]),
    [iquote('back_demod,61,demod,65')] ).

cnf(85,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[63,46])]),
    [iquote('para_into,63.1.1,46.1.1,flip.1')] ).

cnf(87,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[63,43])]),
    [iquote('para_into,63.1.1,42.1.1,flip.1')] ).

cnf(95,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[50,50]),43,43,43]),
    [iquote('para_into,50.1.1.2.1,50.1.1,demod,43,43,43')] ).

cnf(98,plain,
    double_divide(double_divide(A,identity),double_divide(identity,double_divide(B,A))) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[50,63]),
    [iquote('para_into,50.1.1.2,63.1.1')] ).

cnf(100,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(B,double_divide(C,identity)),double_divide(C,A))) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[50,27]),87]),
    [iquote('para_from,50.1.1,27.1.1.2.1.2,demod,87')] ).

cnf(104,plain,
    double_divide(identity,double_divide(double_divide(A,B),B)) = double_divide(A,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[85,27]),85]),
    [iquote('para_from,84.1.1,27.1.1.2.1.2,demod,85')] ).

cnf(132,plain,
    double_divide(double_divide(A,B),double_divide(double_divide(C,B),double_divide(identity,A))) = double_divide(C,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[53,50]),43,33,43]),
    [iquote('para_into,53.1.1.2.2.2.1,50.1.1,demod,43,33,43')] ).

cnf(150,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(identity,B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[53,85]),87,65])]),
    [iquote('para_from,53.1.1,84.1.1.2,demod,87,65,flip.1')] ).

cnf(156,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[95,95]),
    [iquote('para_into,94.1.1.1,94.1.1')] ).

cnf(158,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(identity,double_divide(double_divide(B,double_divide(C,D)),double_divide(identity,D)))) = double_divide(double_divide(A,identity),C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[95,53])]),
    [iquote('para_into,94.1.1.1,53.1.1,flip.1')] ).

cnf(162,plain,
    double_divide(double_divide(A,double_divide(B,C)),double_divide(identity,C)) = double_divide(double_divide(A,identity),B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[95,27])]),
    [iquote('para_into,94.1.1.1,27.1.1,flip.1')] ).

cnf(170,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(identity,double_divide(double_divide(B,identity),C))) = double_divide(double_divide(A,identity),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[158]),162]),
    [iquote('back_demod,158,demod,162')] ).

cnf(194,plain,
    double_divide(double_divide(A,B),identity) = double_divide(identity,double_divide(B,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[104,95])]),
    [iquote('para_into,104.1.1.2.1,94.1.1,flip.1')] ).

cnf(218,plain,
    double_divide(identity,double_divide(double_divide(identity,double_divide(a3,b3)),c3)) != double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),194,194,194,194])]),
    [iquote('back_demod,12,demod,194,194,194,194,flip.1')] ).

cnf(225,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[104,95]),194,85])]),
    [iquote('para_from,104.1.1,94.1.1.1,demod,194,85,flip.1')] ).

cnf(228,plain,
    double_divide(A,double_divide(A,B)) = B,
    inference(para_into,[status(thm),theory(equality)],[225,156]),
    [iquote('para_into,225.1.1.1,156.1.1')] ).

cnf(229,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[225,95]),
    [iquote('para_into,225.1.1.1,94.1.1')] ).

cnf(238,plain,
    double_divide(A,double_divide(B,double_divide(C,identity))) = double_divide(identity,double_divide(double_divide(A,C),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[66,225]),194]),
    [iquote('para_into,66.1.1.2.1,225.1.1,demod,194')] ).

cnf(246,plain,
    double_divide(double_divide(double_divide(A,identity),B),double_divide(identity,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[150,229]),
    [iquote('para_into,150.1.1.1,229.1.1')] ).

cnf(248,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(A,double_divide(B,identity)),
    inference(para_into,[status(thm),theory(equality)],[150,225]),
    [iquote('para_into,150.1.1.1,225.1.1')] ).

cnf(254,plain,
    double_divide(double_divide(identity,A),B) = double_divide(B,double_divide(A,identity)),
    inference(para_from,[status(thm),theory(equality)],[150,156]),
    [iquote('para_from,150.1.1,156.1.1.2')] ).

cnf(255,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(double_divide(identity,B),A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[254])]),
    [iquote('copy,254,flip.1')] ).

cnf(303,plain,
    double_divide(double_divide(identity,A),B) = double_divide(double_divide(A,identity),B),
    inference(para_from,[status(thm),theory(equality)],[246,156]),
    [iquote('para_from,246.1.1,156.1.1.2')] ).

cnf(304,plain,
    double_divide(double_divide(A,identity),B) = double_divide(double_divide(identity,A),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[303])]),
    [iquote('copy,303,flip.1')] ).

cnf(307,plain,
    double_divide(identity,double_divide(double_divide(A,identity),B)) = double_divide(identity,double_divide(double_divide(identity,A),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[248,194]),194]),
    [iquote('para_from,248.1.1,193.1.1.1,demod,194')] ).

cnf(308,plain,
    double_divide(identity,double_divide(double_divide(identity,A),B)) = double_divide(identity,double_divide(double_divide(A,identity),B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[307])]),
    [iquote('copy,307,flip.1')] ).

cnf(324,plain,
    double_divide(double_divide(A,identity),double_divide(identity,B)) = double_divide(identity,double_divide(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[98,225]),194]),
    [iquote('para_into,98.1.1.2.2,225.1.1,demod,194')] ).

cnf(326,plain,
    double_divide(identity,double_divide(double_divide(A,identity),B)) = double_divide(A,double_divide(identity,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[98,150]),95,194])]),
    [iquote('para_into,98.1.1.2.2,150.1.1,demod,95,194,flip.1')] ).

cnf(334,plain,
    double_divide(identity,double_divide(double_divide(identity,A),B)) = double_divide(A,double_divide(identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[308]),326]),
    [iquote('back_demod,308,demod,326')] ).

cnf(345,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(B,double_divide(identity,C))) = double_divide(double_divide(A,identity),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[170]),326]),
    [iquote('back_demod,170,demod,326')] ).

cnf(349,plain,
    double_divide(double_divide(a3,b3),double_divide(identity,c3)) != double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[218]),334]),
    [iquote('back_demod,218,demod,334')] ).

cnf(417,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(B,C)) = double_divide(identity,double_divide(A,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[100,246]),324])]),
    [iquote('para_from,100.1.1,246.1.1.1,demod,324,flip.1')] ).

cnf(419,plain,
    double_divide(double_divide(A,identity),B) = double_divide(identity,double_divide(A,double_divide(identity,B))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[345]),417])]),
    [iquote('back_demod,345,demod,417,flip.1')] ).

cnf(451,plain,
    double_divide(double_divide(identity,A),B) = double_divide(identity,double_divide(A,double_divide(identity,B))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[304]),419])]),
    [iquote('back_demod,304,demod,419,flip.1')] ).

cnf(484,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(identity,double_divide(B,double_divide(identity,A))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[255]),451]),
    [iquote('back_demod,255,demod,451')] ).

cnf(605,plain,
    double_divide(double_divide(A,B),double_divide(identity,double_divide(double_divide(C,double_divide(identity,B)),A))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[132,451]),451,228,95]),
    [iquote('para_into,132.1.1.2.1,450.1.1,demod,451,228,95')] ).

cnf(827,plain,
    double_divide(A,double_divide(B,double_divide(identity,double_divide(C,D)))) = double_divide(identity,double_divide(double_divide(A,double_divide(D,C)),B)),
    inference(para_into,[status(thm),theory(equality)],[238,194]),
    [iquote('para_into,238.1.1.2.2,193.1.1')] ).

cnf(830,plain,
    double_divide(identity,double_divide(double_divide(A,B),C)) = double_divide(A,double_divide(identity,double_divide(B,double_divide(identity,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[238,484])]),
    [iquote('para_into,238.1.1.2,484.1.1,flip.1')] ).

cnf(836,plain,
    double_divide(A,double_divide(B,double_divide(identity,double_divide(C,D)))) = double_divide(A,double_divide(D,double_divide(identity,double_divide(C,B)))),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[827])]),830,830,228]),
    [iquote('copy,827,flip.1,demod,830,830,228')] ).

cnf(853,plain,
    double_divide(double_divide(A,B),double_divide(C,double_divide(B,A))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[605]),830,451,228,228]),
    [iquote('back_demod,605,demod,830,451,228,228')] ).

cnf(918,plain,
    double_divide(double_divide(A,B),C) = double_divide(C,double_divide(B,A)),
    inference(para_into,[status(thm),theory(equality)],[853,225]),
    [iquote('para_into,853.1.1.2,225.1.1')] ).

cnf(1143,plain,
    double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))) != double_divide(identity,double_divide(c3,double_divide(identity,double_divide(b3,a3)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[349,918]),451])]),
    [iquote('para_into,349.1.1,918.1.1,demod,451,flip.1')] ).

cnf(1144,plain,
    $false,
    inference(binary,[status(thm)],[1143,836]),
    [iquote('binary,1143.1,836.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : GRP567-1 : TPTP v8.1.0. Released v2.6.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n027.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:25:06 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.72/1.95  ----- Otter 3.3f, August 2004 -----
% 1.72/1.95  The process was started by sandbox on n027.cluster.edu,
% 1.72/1.95  Wed Jul 27 05:25:06 2022
% 1.72/1.95  The command was "./otter".  The process ID is 22440.
% 1.72/1.95  
% 1.72/1.95  set(prolog_style_variables).
% 1.72/1.95  set(auto).
% 1.72/1.95     dependent: set(auto1).
% 1.72/1.95     dependent: set(process_input).
% 1.72/1.95     dependent: clear(print_kept).
% 1.72/1.95     dependent: clear(print_new_demod).
% 1.72/1.95     dependent: clear(print_back_demod).
% 1.72/1.95     dependent: clear(print_back_sub).
% 1.72/1.95     dependent: set(control_memory).
% 1.72/1.95     dependent: assign(max_mem, 12000).
% 1.72/1.95     dependent: assign(pick_given_ratio, 4).
% 1.72/1.95     dependent: assign(stats_level, 1).
% 1.72/1.95     dependent: assign(max_seconds, 10800).
% 1.72/1.95  clear(print_given).
% 1.72/1.95  
% 1.72/1.95  list(usable).
% 1.72/1.95  0 [] A=A.
% 1.72/1.95  0 [] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))),double_divide(identity,identity))=B.
% 1.72/1.95  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.72/1.95  0 [] inverse(A)=double_divide(A,identity).
% 1.72/1.95  0 [] identity=double_divide(A,inverse(A)).
% 1.72/1.95  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.72/1.95  end_of_list.
% 1.72/1.95  
% 1.72/1.95  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.72/1.95  
% 1.72/1.95  All clauses are units, and equality is present; the
% 1.72/1.95  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.72/1.95  
% 1.72/1.95     dependent: set(knuth_bendix).
% 1.72/1.95     dependent: set(anl_eq).
% 1.72/1.95     dependent: set(para_from).
% 1.72/1.95     dependent: set(para_into).
% 1.72/1.95     dependent: clear(para_from_right).
% 1.72/1.95     dependent: clear(para_into_right).
% 1.72/1.95     dependent: set(para_from_vars).
% 1.72/1.95     dependent: set(eq_units_both_ways).
% 1.72/1.95     dependent: set(dynamic_demod_all).
% 1.72/1.95     dependent: set(dynamic_demod).
% 1.72/1.95     dependent: set(order_eq).
% 1.72/1.95     dependent: set(back_demod).
% 1.72/1.95     dependent: set(lrpo).
% 1.72/1.95  
% 1.72/1.95  ------------> process usable:
% 1.72/1.95  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.72/1.95  
% 1.72/1.95  ------------> process sos:
% 1.72/1.95  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.72/1.95  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))),double_divide(identity,identity))=B.
% 1.72/1.95  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(A,double_divide(double_divide(B,double_divide(A,C)),double_divide(identity,C))),double_divide(identity,identity))=B.
% 1.72/1.95  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.72/1.95  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.72/1.95  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.72/1.95  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.72/1.95  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.72/1.95  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.72/1.95    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.72/1.95  >>>> Starting back demodulation with 4.
% 1.72/1.95  >>>> Starting back demodulation with 6.
% 1.72/1.95      >> back demodulating 1 with 6.
% 1.72/1.95  >>>> Starting back demodulation with 8.
% 1.72/1.95  >>>> Starting back demodulation with 11.
% 1.72/1.95  
% 1.72/1.95  ======= end of input processing =======
% 1.72/1.95  
% 1.72/1.95  =========== start of search ===========
% 1.72/1.95  
% 1.72/1.95  -------- PROOF -------- 
% 1.72/1.95  
% 1.72/1.95  ----> UNIT CONFLICT at   0.07 sec ----> 1144 [binary,1143.1,836.1] $F.
% 1.72/1.95  
% 1.72/1.95  Length of proof is 61.  Level of proof is 21.
% 1.72/1.95  
% 1.72/1.95  ---------------- PROOF ----------------
% 1.72/1.95  % SZS status Unsatisfiable
% 1.72/1.95  % SZS output start Refutation
% See solution above
% 1.72/1.95  ------------ end of proof -------------
% 1.72/1.95  
% 1.72/1.95  
% 1.72/1.95  Search stopped by max_proofs option.
% 1.72/1.95  
% 1.72/1.95  
% 1.72/1.95  Search stopped by max_proofs option.
% 1.72/1.95  
% 1.72/1.95  ============ end of search ============
% 1.72/1.95  
% 1.72/1.95  -------------- statistics -------------
% 1.72/1.95  clauses given                 76
% 1.72/1.95  clauses generated           3393
% 1.72/1.95  clauses kept                 744
% 1.72/1.95  clauses forward subsumed    3427
% 1.72/1.95  clauses back subsumed         13
% 1.72/1.95  Kbytes malloced             1953
% 1.72/1.95  
% 1.72/1.95  ----------- times (seconds) -----------
% 1.72/1.95  user CPU time          0.07          (0 hr, 0 min, 0 sec)
% 1.72/1.95  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.72/1.95  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.72/1.95  
% 1.72/1.95  That finishes the proof of the theorem.
% 1.72/1.95  
% 1.72/1.95  Process 22440 finished Wed Jul 27 05:25:08 2022
% 1.72/1.95  Otter interrupted
% 1.72/1.95  PROOF FOUND
%------------------------------------------------------------------------------