TSTP Solution File: GRP562-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP562-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:56:17 EDT 2022

% Result   : Unsatisfiable 2.09s 2.28s
% Output   : Proof 2.09s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP562-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.13  % Command  : moca.sh %s
% 0.13/0.34  % Computer : n011.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Mon Jun 13 09:51:33 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 2.09/2.28  % SZS status Unsatisfiable
% 2.09/2.28  % SZS output start Proof
% 2.09/2.28  The input problem is unsatisfiable because
% 2.09/2.28  
% 2.09/2.28  [1] the following set of Horn clauses is unsatisfiable:
% 2.09/2.28  
% 2.09/2.28  	divide(divide(divide(A, inverse(B)), C), divide(A, C)) = B
% 2.09/2.28  	multiply(A, B) = divide(A, inverse(B))
% 2.09/2.28  	multiply(multiply(inverse(b2), b2), a2) = a2 ==> \bottom
% 2.09/2.28  
% 2.09/2.28  This holds because
% 2.09/2.28  
% 2.09/2.28  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 2.09/2.28  
% 2.09/2.28  E:
% 2.09/2.28  	divide(divide(divide(A, inverse(B)), C), divide(A, C)) = B
% 2.09/2.28  	f1(a2) = false__
% 2.09/2.28  	f1(multiply(multiply(inverse(b2), b2), a2)) = true__
% 2.09/2.28  	multiply(A, B) = divide(A, inverse(B))
% 2.09/2.28  G:
% 2.09/2.28  	true__ = false__
% 2.09/2.28  
% 2.09/2.28  This holds because
% 2.09/2.28  
% 2.09/2.28  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 2.09/2.28  
% 2.09/2.28  	divide(Y0, X1) = divide(inverse(X1), inverse(Y0))
% 2.09/2.28  	divide(inverse(inverse(Y1)), inverse(Y0)) = divide(Y0, inverse(Y1))
% 2.09/2.28  	divide(X1, divide(Y0, divide(inverse(X1), inverse(divide(Y0, inverse(Y1)))))) -> Y1
% 2.09/2.28  	divide(X1, divide(divide(X0, inverse(X1)), divide(X0, inverse(Y1)))) -> Y1
% 2.09/2.28  	divide(X1, divide(divide(inverse(Y2), inverse(divide(Y1, inverse(X1)))), Y1)) -> Y2
% 2.09/2.28  	divide(X1, divide(inverse(Y1), inverse(X1))) -> Y1
% 2.09/2.28  	divide(X2, divide(Y0, divide(divide(X1, inverse(divide(Y0, inverse(Y1)))), divide(X1, inverse(X2))))) -> Y1
% 2.09/2.28  	divide(Y0, divide(X1, divide(divide(inverse(Y0), inverse(X1)), inverse(Y2)))) -> Y2
% 2.09/2.28  	divide(Y0, divide(divide(divide(inverse(Y2), inverse(X1)), inverse(Y0)), X1)) -> Y2
% 2.09/2.28  	divide(Y0, multiply(inverse(inverse(Y0)), inverse(Y1))) -> Y1
% 2.09/2.28  	divide(Y1, divide(Y2, Y2)) -> Y1
% 2.09/2.28  	divide(divide(X1, X1), inverse(Y1)) -> Y1
% 2.09/2.28  	divide(divide(X1, Y2), divide(divide(inverse(Y1), inverse(X1)), Y2)) -> Y1
% 2.09/2.28  	divide(divide(Y1, inverse(Y3)), Y1) -> Y3
% 2.09/2.28  	divide(divide(divide(A, inverse(B)), C), divide(A, C)) -> B
% 2.09/2.28  	divide(divide(divide(Y0, inverse(Y1)), divide(divide(X1, inverse(Y0)), divide(X1, inverse(X2)))), X2) -> Y1
% 2.09/2.28  	divide(divide(divide(Y0, inverse(Y1)), divide(inverse(X1), inverse(Y0))), X1) -> Y1
% 2.09/2.28  	divide(divide(divide(Y0, inverse(divide(X1, X1))), inverse(Y2)), Y0) -> Y2
% 2.09/2.28  	divide(divide(divide(divide(Y2, inverse(X1)), inverse(Y1)), Y2), X1) -> Y1
% 2.09/2.28  	divide(divide(divide(divide(divide(X0, inverse(X1)), X2), inverse(Y1)), divide(X0, X2)), X1) -> Y1
% 2.09/2.28  	divide(inverse(Y0), inverse(divide(Y0, inverse(Y1)))) -> Y1
% 2.09/2.28  	divide(inverse(Y0), inverse(divide(inverse(inverse(Y1)), inverse(Y0)))) -> Y1
% 2.09/2.28  	divide(inverse(divide(X1, X1)), inverse(Y0)) -> Y0
% 2.09/2.28  	divide(inverse(inverse(X0)), inverse(X1)) -> divide(X0, inverse(X1))
% 2.09/2.28  	divide(inverse(inverse(X1)), inverse(divide(X0, X0))) -> X1
% 2.09/2.28  	divide(inverse(inverse(divide(X0, X0))), inverse(Y1)) -> Y1
% 2.09/2.28  	divide(multiply(inverse(inverse(Y1)), Y0), Y0) -> Y1
% 2.09/2.28  	f1(a2) -> false__
% 2.09/2.28  	f1(divide(divide(inverse(b2), inverse(b2)), inverse(a2))) -> true__
% 2.09/2.28  	f1(multiply(divide(b2, b2), a2)) -> true__
% 2.09/2.28  	multiply(A, B) -> divide(A, inverse(B))
% 2.09/2.28  	multiply(inverse(Y0), multiply(Y0, Y1)) -> Y1
% 2.09/2.28  	multiply(inverse(divide(X1, X1)), Y0) -> Y0
% 2.09/2.28  	multiply(inverse(inverse(Y1)), divide(Y0, Y0)) -> Y1
% 2.09/2.28  	true__ -> false__
% 2.09/2.28  with the LPO induced by
% 2.09/2.28  	b2 > multiply > divide > inverse > a2 > f1 > true__ > false__
% 2.09/2.28  
% 2.09/2.28  % SZS output end Proof
% 2.09/2.28  
%------------------------------------------------------------------------------