TSTP Solution File: GRP558-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP558-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:15 EDT 2022

% Result   : Unsatisfiable 1.66s 1.88s
% Output   : Refutation 1.66s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   22 (  22 unt;   0 nHn;   3 RR)
%            Number of literals    :   22 (  21 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   47 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP558-1.p',unknown),
    [] ).

cnf(3,axiom,
    divide(A,inverse(divide(divide(B,C),divide(A,C)))) = B,
    file('GRP558-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = divide(A,inverse(B)),
    file('GRP558-1.p',unknown),
    [] ).

cnf(6,plain,
    divide(A,inverse(B)) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(8,plain,
    multiply(divide(inverse(b2),inverse(b2)),a2) != a2,
    inference(para_from,[status(thm),theory(equality)],[5,1]),
    [iquote('para_from,5.1.1,1.1.1.1')] ).

cnf(12,plain,
    divide(A,inverse(divide(B,divide(A,inverse(divide(divide(B,C),divide(D,C))))))) = D,
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.2.1.1,3.1.1')] ).

cnf(18,plain,
    multiply(A,divide(divide(B,C),divide(A,C))) = B,
    inference(para_into,[status(thm),theory(equality)],[3,6]),
    [iquote('para_into,3.1.1,6.1.1')] ).

cnf(20,plain,
    multiply(A,divide(multiply(B,C),divide(A,inverse(C)))) = B,
    inference(para_into,[status(thm),theory(equality)],[18,6]),
    [iquote('para_into,18.1.1.2.1,6.1.1')] ).

cnf(30,plain,
    multiply(A,divide(multiply(B,C),multiply(A,C))) = B,
    inference(para_into,[status(thm),theory(equality)],[20,6]),
    [iquote('para_into,20.1.1.2.2,6.1.1')] ).

cnf(32,plain,
    multiply(A,divide(multiply(B,divide(divide(C,D),divide(A,D))),C)) = B,
    inference(para_into,[status(thm),theory(equality)],[20,3]),
    [iquote('para_into,20.1.1.2.2,3.1.1')] ).

cnf(44,plain,
    divide(A,inverse(divide(multiply(B,C),multiply(A,C)))) = B,
    inference(para_into,[status(thm),theory(equality)],[30,5]),
    [iquote('para_into,30.1.1,5.1.1')] ).

cnf(105,plain,
    multiply(A,divide(B,B)) = A,
    inference(para_into,[status(thm),theory(equality)],[32,18]),
    [iquote('para_into,32.1.1.2.1,18.1.1')] ).

cnf(144,plain,
    divide(A,inverse(divide(B,B))) = A,
    inference(para_into,[status(thm),theory(equality)],[12,3]),
    [iquote('para_into,12.1.1.2.1.2,3.1.1')] ).

cnf(164,plain,
    multiply(A,divide(B,A)) = B,
    inference(para_from,[status(thm),theory(equality)],[105,32]),
    [iquote('para_from,104.1.1,32.1.1.2.1')] ).

cnf(166,plain,
    divide(A,inverse(divide(B,A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[105,44]),105]),
    [iquote('para_from,104.1.1,44.1.1.2.1.2,demod,105')] ).

cnf(203,plain,
    multiply(inverse(divide(A,A)),B) = B,
    inference(para_from,[status(thm),theory(equality)],[144,164]),
    [iquote('para_from,144.1.1,164.1.1.2')] ).

cnf(314,plain,
    multiply(inverse(inverse(divide(A,A))),B) = B,
    inference(para_into,[status(thm),theory(equality)],[203,144]),
    [iquote('para_into,202.1.1.1.1,144.1.1')] ).

cnf(320,plain,
    divide(multiply(A,B),B) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[203,30]),203])]),
    [iquote('para_into,202.1.1,30.1.1,demod,203,flip.1')] ).

cnf(339,plain,
    divide(A,divide(A,B)) = B,
    inference(para_into,[status(thm),theory(equality)],[320,164]),
    [iquote('para_into,320.1.1.1,164.1.1')] ).

cnf(462,plain,
    inverse(divide(A,B)) = divide(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[339,166])]),
    [iquote('para_into,339.1.1.2,166.1.1,flip.1')] ).

cnf(514,plain,
    multiply(divide(A,A),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[314]),462,462]),
    [iquote('back_demod,314,demod,462,462')] ).

cnf(516,plain,
    $false,
    inference(binary,[status(thm)],[514,8]),
    [iquote('binary,514.1,8.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP558-1 : TPTP v8.1.0. Released v2.6.0.
% 0.10/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n019.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:13:07 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.66/1.88  ----- Otter 3.3f, August 2004 -----
% 1.66/1.88  The process was started by sandbox on n019.cluster.edu,
% 1.66/1.88  Wed Jul 27 05:13:07 2022
% 1.66/1.88  The command was "./otter".  The process ID is 28786.
% 1.66/1.88  
% 1.66/1.88  set(prolog_style_variables).
% 1.66/1.88  set(auto).
% 1.66/1.88     dependent: set(auto1).
% 1.66/1.88     dependent: set(process_input).
% 1.66/1.88     dependent: clear(print_kept).
% 1.66/1.88     dependent: clear(print_new_demod).
% 1.66/1.88     dependent: clear(print_back_demod).
% 1.66/1.88     dependent: clear(print_back_sub).
% 1.66/1.88     dependent: set(control_memory).
% 1.66/1.88     dependent: assign(max_mem, 12000).
% 1.66/1.88     dependent: assign(pick_given_ratio, 4).
% 1.66/1.88     dependent: assign(stats_level, 1).
% 1.66/1.88     dependent: assign(max_seconds, 10800).
% 1.66/1.88  clear(print_given).
% 1.66/1.88  
% 1.66/1.88  list(usable).
% 1.66/1.88  0 [] A=A.
% 1.66/1.88  0 [] divide(A,inverse(divide(divide(B,C),divide(A,C))))=B.
% 1.66/1.88  0 [] multiply(A,B)=divide(A,inverse(B)).
% 1.66/1.88  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.66/1.88  end_of_list.
% 1.66/1.88  
% 1.66/1.88  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.66/1.88  
% 1.66/1.88  All clauses are units, and equality is present; the
% 1.66/1.88  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.66/1.88  
% 1.66/1.88     dependent: set(knuth_bendix).
% 1.66/1.88     dependent: set(anl_eq).
% 1.66/1.88     dependent: set(para_from).
% 1.66/1.88     dependent: set(para_into).
% 1.66/1.88     dependent: clear(para_from_right).
% 1.66/1.88     dependent: clear(para_into_right).
% 1.66/1.88     dependent: set(para_from_vars).
% 1.66/1.88     dependent: set(eq_units_both_ways).
% 1.66/1.88     dependent: set(dynamic_demod_all).
% 1.66/1.88     dependent: set(dynamic_demod).
% 1.66/1.88     dependent: set(order_eq).
% 1.66/1.88     dependent: set(back_demod).
% 1.66/1.88     dependent: set(lrpo).
% 1.66/1.88  
% 1.66/1.88  ------------> process usable:
% 1.66/1.88  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.66/1.88  
% 1.66/1.88  ------------> process sos:
% 1.66/1.88  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.66/1.88  ** KEPT (pick-wt=12): 3 [] divide(A,inverse(divide(divide(B,C),divide(A,C))))=B.
% 1.66/1.88  ---> New Demodulator: 4 [new_demod,3] divide(A,inverse(divide(divide(B,C),divide(A,C))))=B.
% 1.66/1.88  ** KEPT (pick-wt=8): 5 [] multiply(A,B)=divide(A,inverse(B)).
% 1.66/1.88    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.66/1.88  >>>> Starting back demodulation with 4.
% 1.66/1.88  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] divide(A,inverse(B))=multiply(A,B).
% 1.66/1.88    Following clause subsumed by 5 during input processing: 0 [copy,6,flip.1] multiply(A,B)=divide(A,inverse(B)).
% 1.66/1.88  
% 1.66/1.88  ======= end of input processing =======
% 1.66/1.88  
% 1.66/1.88  =========== start of search ===========
% 1.66/1.88  
% 1.66/1.88  -------- PROOF -------- 
% 1.66/1.88  
% 1.66/1.88  ----> UNIT CONFLICT at   0.01 sec ----> 516 [binary,514.1,8.1] $F.
% 1.66/1.88  
% 1.66/1.88  Length of proof is 18.  Level of proof is 11.
% 1.66/1.88  
% 1.66/1.88  ---------------- PROOF ----------------
% 1.66/1.88  % SZS status Unsatisfiable
% 1.66/1.88  % SZS output start Refutation
% See solution above
% 1.66/1.89  ------------ end of proof -------------
% 1.66/1.89  
% 1.66/1.89  
% 1.66/1.89  Search stopped by max_proofs option.
% 1.66/1.89  
% 1.66/1.89  
% 1.66/1.89  Search stopped by max_proofs option.
% 1.66/1.89  
% 1.66/1.89  ============ end of search ============
% 1.66/1.89  
% 1.66/1.89  -------------- statistics -------------
% 1.66/1.89  clauses given                 27
% 1.66/1.89  clauses generated            465
% 1.66/1.89  clauses kept                 283
% 1.66/1.89  clauses forward subsumed     314
% 1.66/1.89  clauses back subsumed          0
% 1.66/1.89  Kbytes malloced             4882
% 1.66/1.89  
% 1.66/1.89  ----------- times (seconds) -----------
% 1.66/1.89  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.66/1.89  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.66/1.89  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.66/1.89  
% 1.66/1.89  That finishes the proof of the theorem.
% 1.66/1.89  
% 1.66/1.89  Process 28786 finished Wed Jul 27 05:13:08 2022
% 1.66/1.89  Otter interrupted
% 1.66/1.89  PROOF FOUND
%------------------------------------------------------------------------------