TSTP Solution File: GRP555-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP555-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:14 EDT 2022

% Result   : Unsatisfiable 1.68s 1.91s
% Output   : Refutation 1.68s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   22 (  22 unt;   0 nHn;   3 RR)
%            Number of literals    :   22 (  21 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   50 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP555-1.p',unknown),
    [] ).

cnf(3,axiom,
    divide(divide(A,inverse(divide(B,divide(A,C)))),C) = B,
    file('GRP555-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = divide(A,inverse(B)),
    file('GRP555-1.p',unknown),
    [] ).

cnf(6,plain,
    divide(A,inverse(B)) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(9,plain,
    divide(divide(A,inverse(divide(B,multiply(A,C)))),inverse(C)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,6]),
    [iquote('para_into,3.1.1.1.2.1.2,6.1.1')] ).

cnf(11,plain,
    divide(divide(divide(A,inverse(divide(B,divide(A,C)))),inverse(divide(D,B))),C) = D,
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2.1.2,3.1.1')] ).

cnf(15,plain,
    divide(multiply(A,divide(B,divide(A,C))),C) = B,
    inference(para_into,[status(thm),theory(equality)],[3,6]),
    [iquote('para_into,3.1.1.1,6.1.1')] ).

cnf(27,plain,
    multiply(multiply(A,divide(B,divide(A,inverse(C)))),C) = B,
    inference(para_into,[status(thm),theory(equality)],[15,6]),
    [iquote('para_into,15.1.1,6.1.1')] ).

cnf(72,plain,
    multiply(multiply(divide(A,inverse(divide(B,multiply(A,C)))),divide(D,B)),C) = D,
    inference(para_into,[status(thm),theory(equality)],[27,9]),
    [iquote('para_into,27.1.1.1.2.2,9.1.1')] ).

cnf(139,plain,
    divide(A,inverse(divide(B,A))) = B,
    inference(para_into,[status(thm),theory(equality)],[11,3]),
    [iquote('para_into,11.1.1.1,3.1.1')] ).

cnf(175,plain,
    divide(A,inverse(divide(B,multiply(A,C)))) = divide(inverse(C),inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[139,9])]),
    [iquote('para_into,139.1.1.2.1,9.1.1,flip.1')] ).

cnf(179,plain,
    divide(A,inverse(divide(B,divide(A,C)))) = divide(C,inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[139,3])]),
    [iquote('para_into,139.1.1.2.1,3.1.1,flip.1')] ).

cnf(206,plain,
    multiply(multiply(divide(inverse(A),inverse(B)),divide(C,B)),A) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[72]),175]),
    [iquote('back_demod,72,demod,175')] ).

cnf(222,plain,
    divide(divide(A,inverse(B)),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3]),179]),
    [iquote('back_demod,3,demod,179')] ).

cnf(247,plain,
    divide(multiply(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[222,6]),
    [iquote('para_into,222.1.1.1,6.1.1')] ).

cnf(260,plain,
    multiply(multiply(inverse(A),B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[247,6]),
    [iquote('para_into,247.1.1,6.1.1')] ).

cnf(268,plain,
    multiply(divide(A,B),C) = divide(multiply(A,C),B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[247,15])]),
    [iquote('para_from,247.1.1,15.1.1.1.2,flip.1')] ).

cnf(275,plain,
    divide(divide(A,B),inverse(B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[206]),268,268,260]),
    [iquote('back_demod,206,demod,268,268,260')] ).

cnf(461,plain,
    divide(A,inverse(B)) = multiply(B,A),
    inference(para_into,[status(thm),theory(equality)],[275,247]),
    [iquote('para_into,275.1.1.1,247.1.1')] ).

cnf(471,plain,
    multiply(A,B) = divide(B,inverse(A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[461])]),
    [iquote('copy,461,flip.1')] ).

cnf(797,plain,
    divide(multiply(b3,c3),inverse(a3)) != multiply(a3,multiply(b3,c3)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[471,1]),268]),
    [iquote('para_from,471.1.1,1.1.1.1,demod,268')] ).

cnf(798,plain,
    $false,
    inference(binary,[status(thm)],[797,461]),
    [iquote('binary,797.1,461.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : GRP555-1 : TPTP v8.1.0. Released v2.6.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n007.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:10:16 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.68/1.91  ----- Otter 3.3f, August 2004 -----
% 1.68/1.91  The process was started by sandbox on n007.cluster.edu,
% 1.68/1.91  Wed Jul 27 05:10:16 2022
% 1.68/1.91  The command was "./otter".  The process ID is 7938.
% 1.68/1.91  
% 1.68/1.91  set(prolog_style_variables).
% 1.68/1.91  set(auto).
% 1.68/1.91     dependent: set(auto1).
% 1.68/1.91     dependent: set(process_input).
% 1.68/1.91     dependent: clear(print_kept).
% 1.68/1.91     dependent: clear(print_new_demod).
% 1.68/1.91     dependent: clear(print_back_demod).
% 1.68/1.91     dependent: clear(print_back_sub).
% 1.68/1.91     dependent: set(control_memory).
% 1.68/1.91     dependent: assign(max_mem, 12000).
% 1.68/1.91     dependent: assign(pick_given_ratio, 4).
% 1.68/1.91     dependent: assign(stats_level, 1).
% 1.68/1.91     dependent: assign(max_seconds, 10800).
% 1.68/1.91  clear(print_given).
% 1.68/1.91  
% 1.68/1.91  list(usable).
% 1.68/1.91  0 [] A=A.
% 1.68/1.91  0 [] divide(divide(A,inverse(divide(B,divide(A,C)))),C)=B.
% 1.68/1.91  0 [] multiply(A,B)=divide(A,inverse(B)).
% 1.68/1.91  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.68/1.91  end_of_list.
% 1.68/1.91  
% 1.68/1.91  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.68/1.91  
% 1.68/1.91  All clauses are units, and equality is present; the
% 1.68/1.91  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.68/1.91  
% 1.68/1.91     dependent: set(knuth_bendix).
% 1.68/1.91     dependent: set(anl_eq).
% 1.68/1.91     dependent: set(para_from).
% 1.68/1.91     dependent: set(para_into).
% 1.68/1.91     dependent: clear(para_from_right).
% 1.68/1.91     dependent: clear(para_into_right).
% 1.68/1.91     dependent: set(para_from_vars).
% 1.68/1.91     dependent: set(eq_units_both_ways).
% 1.68/1.91     dependent: set(dynamic_demod_all).
% 1.68/1.91     dependent: set(dynamic_demod).
% 1.68/1.91     dependent: set(order_eq).
% 1.68/1.91     dependent: set(back_demod).
% 1.68/1.91     dependent: set(lrpo).
% 1.68/1.91  
% 1.68/1.91  ------------> process usable:
% 1.68/1.91  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.68/1.91  
% 1.68/1.91  ------------> process sos:
% 1.68/1.91  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.68/1.91  ** KEPT (pick-wt=12): 3 [] divide(divide(A,inverse(divide(B,divide(A,C)))),C)=B.
% 1.68/1.91  ---> New Demodulator: 4 [new_demod,3] divide(divide(A,inverse(divide(B,divide(A,C)))),C)=B.
% 1.68/1.91  ** KEPT (pick-wt=8): 5 [] multiply(A,B)=divide(A,inverse(B)).
% 1.68/1.91    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.68/1.91  >>>> Starting back demodulation with 4.
% 1.68/1.91  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] divide(A,inverse(B))=multiply(A,B).
% 1.68/1.91    Following clause subsumed by 5 during input processing: 0 [copy,6,flip.1] multiply(A,B)=divide(A,inverse(B)).
% 1.68/1.91  
% 1.68/1.91  ======= end of input processing =======
% 1.68/1.91  
% 1.68/1.91  =========== start of search ===========
% 1.68/1.91  
% 1.68/1.91  -------- PROOF -------- 
% 1.68/1.91  
% 1.68/1.91  ----> UNIT CONFLICT at   0.03 sec ----> 798 [binary,797.1,461.1] $F.
% 1.68/1.91  
% 1.68/1.91  Length of proof is 18.  Level of proof is 10.
% 1.68/1.91  
% 1.68/1.91  ---------------- PROOF ----------------
% 1.68/1.91  % SZS status Unsatisfiable
% 1.68/1.91  % SZS output start Refutation
% See solution above
% 1.68/1.91  ------------ end of proof -------------
% 1.68/1.91  
% 1.68/1.91  
% 1.68/1.91  Search stopped by max_proofs option.
% 1.68/1.91  
% 1.68/1.91  
% 1.68/1.91  Search stopped by max_proofs option.
% 1.68/1.91  
% 1.68/1.91  ============ end of search ============
% 1.68/1.91  
% 1.68/1.91  -------------- statistics -------------
% 1.68/1.91  clauses given                 39
% 1.68/1.91  clauses generated            675
% 1.68/1.91  clauses kept                 542
% 1.68/1.91  clauses forward subsumed     725
% 1.68/1.91  clauses back subsumed          0
% 1.68/1.91  Kbytes malloced             3906
% 1.68/1.91  
% 1.68/1.91  ----------- times (seconds) -----------
% 1.68/1.91  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 1.68/1.91  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.68/1.91  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.68/1.91  
% 1.68/1.91  That finishes the proof of the theorem.
% 1.68/1.91  
% 1.68/1.91  Process 7938 finished Wed Jul 27 05:10:17 2022
% 1.68/1.91  Otter interrupted
% 1.68/1.91  PROOF FOUND
%------------------------------------------------------------------------------