TSTP Solution File: GRP530-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP530-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:11 EDT 2022

% Result   : Unsatisfiable 1.66s 1.87s
% Output   : Refutation 1.66s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   17 (  17 unt;   0 nHn;   3 RR)
%            Number of literals    :   17 (  16 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   32 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP530-1.p',unknown),
    [] ).

cnf(3,axiom,
    divide(divide(A,divide(B,C)),divide(A,B)) = C,
    file('GRP530-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = divide(A,divide(divide(C,C),B)),
    file('GRP530-1.p',unknown),
    [] ).

cnf(6,axiom,
    inverse(A) = divide(divide(B,B),A),
    file('GRP530-1.p',unknown),
    [] ).

cnf(7,plain,
    divide(A,divide(divide(B,B),C)) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(8,plain,
    divide(divide(A,A),B) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(43,plain,
    inverse(divide(divide(A,B),A)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,8]),
    [iquote('para_into,3.1.1,8.1.1')] ).

cnf(52,plain,
    inverse(inverse(A)) = A,
    inference(para_into,[status(thm),theory(equality)],[43,8]),
    [iquote('para_into,43.1.1.1,8.1.1')] ).

cnf(57,plain,
    inverse(A) = divide(divide(B,A),B),
    inference(para_into,[status(thm),theory(equality)],[52,43]),
    [iquote('para_into,51.1.1.1,43.1.1')] ).

cnf(64,plain,
    divide(divide(A,A),inverse(B)) = B,
    inference(para_into,[status(thm),theory(equality)],[52,6]),
    [iquote('para_into,51.1.1,6.1.1')] ).

cnf(66,plain,
    divide(divide(A,B),A) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[57])]),
    [iquote('copy,57,flip.1')] ).

cnf(77,plain,
    multiply(multiply(divide(divide(A,b2),A),b2),a2) != a2,
    inference(para_from,[status(thm),theory(equality)],[57,1]),
    [iquote('para_from,57.1.1,1.1.1.1.1')] ).

cnf(97,plain,
    divide(A,divide(B,B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[66,64]),52]),
    [iquote('para_into,66.1.1.1,64.1.1,demod,52')] ).

cnf(116,plain,
    divide(A,divide(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[97,3])]),
    [iquote('para_into,97.1.1,3.1.1,flip.1')] ).

cnf(148,plain,
    multiply(divide(A,A),B) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,116])]),
    [iquote('para_into,7.1.1,116.1.1,flip.1')] ).

cnf(174,plain,
    multiply(multiply(divide(divide(A,A),B),B),C) = C,
    inference(para_into,[status(thm),theory(equality)],[148,7]),
    [iquote('para_into,148.1.1.1,7.1.1')] ).

cnf(176,plain,
    $false,
    inference(binary,[status(thm)],[174,77]),
    [iquote('binary,174.1,77.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP530-1 : TPTP v8.1.0. Released v2.6.0.
% 0.10/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n024.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:24:55 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.66/1.87  ----- Otter 3.3f, August 2004 -----
% 1.66/1.87  The process was started by sandbox on n024.cluster.edu,
% 1.66/1.87  Wed Jul 27 05:24:55 2022
% 1.66/1.87  The command was "./otter".  The process ID is 3780.
% 1.66/1.87  
% 1.66/1.87  set(prolog_style_variables).
% 1.66/1.87  set(auto).
% 1.66/1.87     dependent: set(auto1).
% 1.66/1.87     dependent: set(process_input).
% 1.66/1.87     dependent: clear(print_kept).
% 1.66/1.87     dependent: clear(print_new_demod).
% 1.66/1.87     dependent: clear(print_back_demod).
% 1.66/1.87     dependent: clear(print_back_sub).
% 1.66/1.87     dependent: set(control_memory).
% 1.66/1.87     dependent: assign(max_mem, 12000).
% 1.66/1.87     dependent: assign(pick_given_ratio, 4).
% 1.66/1.87     dependent: assign(stats_level, 1).
% 1.66/1.87     dependent: assign(max_seconds, 10800).
% 1.66/1.87  clear(print_given).
% 1.66/1.87  
% 1.66/1.87  list(usable).
% 1.66/1.87  0 [] A=A.
% 1.66/1.87  0 [] divide(divide(A,divide(B,C)),divide(A,B))=C.
% 1.66/1.87  0 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.66/1.87  0 [] inverse(A)=divide(divide(B,B),A).
% 1.66/1.87  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.66/1.87  end_of_list.
% 1.66/1.87  
% 1.66/1.87  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.66/1.87  
% 1.66/1.87  All clauses are units, and equality is present; the
% 1.66/1.87  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.66/1.87  
% 1.66/1.87     dependent: set(knuth_bendix).
% 1.66/1.87     dependent: set(anl_eq).
% 1.66/1.87     dependent: set(para_from).
% 1.66/1.87     dependent: set(para_into).
% 1.66/1.87     dependent: clear(para_from_right).
% 1.66/1.87     dependent: clear(para_into_right).
% 1.66/1.87     dependent: set(para_from_vars).
% 1.66/1.87     dependent: set(eq_units_both_ways).
% 1.66/1.87     dependent: set(dynamic_demod_all).
% 1.66/1.87     dependent: set(dynamic_demod).
% 1.66/1.87     dependent: set(order_eq).
% 1.66/1.87     dependent: set(back_demod).
% 1.66/1.87     dependent: set(lrpo).
% 1.66/1.87  
% 1.66/1.87  ------------> process usable:
% 1.66/1.87  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.66/1.87  
% 1.66/1.87  ------------> process sos:
% 1.66/1.87  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.66/1.87  ** KEPT (pick-wt=11): 3 [] divide(divide(A,divide(B,C)),divide(A,B))=C.
% 1.66/1.87  ---> New Demodulator: 4 [new_demod,3] divide(divide(A,divide(B,C)),divide(A,B))=C.
% 1.66/1.87  ** KEPT (pick-wt=11): 5 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.66/1.87  ** KEPT (pick-wt=8): 6 [] inverse(A)=divide(divide(B,B),A).
% 1.66/1.87    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.66/1.87  >>>> Starting back demodulation with 4.
% 1.66/1.87  ** KEPT (pick-wt=11): 7 [copy,5,flip.1] divide(A,divide(divide(B,B),C))=multiply(A,C).
% 1.66/1.87  ** KEPT (pick-wt=8): 8 [copy,6,flip.1] divide(divide(A,A),B)=inverse(B).
% 1.66/1.87    Following clause subsumed by 5 during input processing: 0 [copy,7,flip.1] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.66/1.87    Following clause subsumed by 6 during input processing: 0 [copy,8,flip.1] inverse(A)=divide(divide(B,B),A).
% 1.66/1.87  
% 1.66/1.87  ======= end of input processing =======
% 1.66/1.87  
% 1.66/1.87  =========== start of search ===========
% 1.66/1.87  
% 1.66/1.87  -------- PROOF -------- 
% 1.66/1.87  
% 1.66/1.87  ----> UNIT CONFLICT at   0.00 sec ----> 176 [binary,174.1,77.1] $F.
% 1.66/1.87  
% 1.66/1.87  Length of proof is 12.  Level of proof is 9.
% 1.66/1.87  
% 1.66/1.87  ---------------- PROOF ----------------
% 1.66/1.87  % SZS status Unsatisfiable
% 1.66/1.87  % SZS output start Refutation
% See solution above
% 1.66/1.87  ------------ end of proof -------------
% 1.66/1.87  
% 1.66/1.87  
% 1.66/1.87  Search stopped by max_proofs option.
% 1.66/1.87  
% 1.66/1.87  
% 1.66/1.87  Search stopped by max_proofs option.
% 1.66/1.87  
% 1.66/1.87  ============ end of search ============
% 1.66/1.87  
% 1.66/1.87  -------------- statistics -------------
% 1.66/1.87  clauses given                 19
% 1.66/1.87  clauses generated            234
% 1.66/1.87  clauses kept                 120
% 1.66/1.87  clauses forward subsumed     223
% 1.66/1.87  clauses back subsumed          2
% 1.66/1.87  Kbytes malloced             1953
% 1.66/1.87  
% 1.66/1.87  ----------- times (seconds) -----------
% 1.66/1.87  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.66/1.87  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.66/1.87  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.66/1.87  
% 1.66/1.87  That finishes the proof of the theorem.
% 1.66/1.87  
% 1.66/1.87  Process 3780 finished Wed Jul 27 05:24:56 2022
% 1.66/1.87  Otter interrupted
% 1.66/1.87  PROOF FOUND
%------------------------------------------------------------------------------