TSTP Solution File: GRP524-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP524-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:11 EDT 2022

% Result   : Unsatisfiable 1.98s 2.12s
% Output   : Refutation 1.98s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   20 (  20 unt;   0 nHn;   3 RR)
%            Number of literals    :   20 (  19 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   45 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(a,b) != multiply(b,a),
    file('GRP524-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(b,a) != multiply(a,b),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(5,axiom,
    divide(A,divide(B,divide(C,divide(A,B)))) = C,
    file('GRP524-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = divide(A,divide(divide(C,C),B)),
    file('GRP524-1.p',unknown),
    [] ).

cnf(7,axiom,
    inverse(A) = divide(divide(B,B),A),
    file('GRP524-1.p',unknown),
    [] ).

cnf(8,plain,
    divide(A,divide(divide(B,B),C)) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(10,plain,
    divide(divide(A,A),B) = divide(divide(C,C),B),
    inference(para_into,[status(thm),theory(equality)],[7,7]),
    [iquote('para_into,7.1.1,7.1.1')] ).

cnf(83,plain,
    divide(A,multiply(divide(B,B),C)) = multiply(A,divide(divide(D,D),C)),
    inference(para_into,[status(thm),theory(equality)],[8,8]),
    [iquote('para_into,8.1.1.2,8.1.1')] ).

cnf(89,plain,
    multiply(A,divide(B,divide(A,divide(C,C)))) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,5])]),
    [iquote('para_into,8.1.1,4.1.1,flip.1')] ).

cnf(96,plain,
    multiply(A,divide(divide(B,B),C)) = divide(A,multiply(divide(D,D),C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[83])]),
    [iquote('copy,83,flip.1')] ).

cnf(126,plain,
    divide(A,A) = divide(B,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[10,5]),5]),
    [iquote('para_from,10.1.1,4.1.1.2.2,demod,5')] ).

cnf(141,plain,
    divide(A,divide(B,divide(C,C))) = divide(A,B),
    inference(para_from,[status(thm),theory(equality)],[126,5]),
    [iquote('para_from,126.1.1,4.1.1.2.2')] ).

cnf(142,plain,
    divide(A,divide(A,B)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[126,5]),141]),
    [iquote('para_from,126.1.1,4.1.1.2.2.2,demod,141')] ).

cnf(147,plain,
    multiply(A,divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[89]),141]),
    [iquote('back_demod,89,demod,141')] ).

cnf(170,plain,
    multiply(divide(A,A),B) = B,
    inference(para_into,[status(thm),theory(equality)],[142,8]),
    [iquote('para_into,142.1.1,8.1.1')] ).

cnf(180,plain,
    multiply(A,divide(divide(B,B),C)) = divide(A,C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[96]),170]),
    [iquote('back_demod,96,demod,170')] ).

cnf(183,plain,
    multiply(divide(A,B),B) = A,
    inference(para_into,[status(thm),theory(equality)],[147,142]),
    [iquote('para_into,147.1.1.2,142.1.1')] ).

cnf(244,plain,
    divide(multiply(A,B),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[183,8]),180]),
    [iquote('para_into,183.1.1.1,8.1.1,demod,180')] ).

cnf(256,plain,
    multiply(A,B) = multiply(B,A),
    inference(para_from,[status(thm),theory(equality)],[244,147]),
    [iquote('para_from,244.1.1,147.1.1.2')] ).

cnf(257,plain,
    $false,
    inference(binary,[status(thm)],[256,2]),
    [iquote('binary,256.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP524-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n020.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 05:05:53 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.98/2.12  ----- Otter 3.3f, August 2004 -----
% 1.98/2.12  The process was started by sandbox2 on n020.cluster.edu,
% 1.98/2.12  Wed Jul 27 05:05:53 2022
% 1.98/2.12  The command was "./otter".  The process ID is 28837.
% 1.98/2.12  
% 1.98/2.12  set(prolog_style_variables).
% 1.98/2.12  set(auto).
% 1.98/2.12     dependent: set(auto1).
% 1.98/2.12     dependent: set(process_input).
% 1.98/2.12     dependent: clear(print_kept).
% 1.98/2.12     dependent: clear(print_new_demod).
% 1.98/2.12     dependent: clear(print_back_demod).
% 1.98/2.12     dependent: clear(print_back_sub).
% 1.98/2.12     dependent: set(control_memory).
% 1.98/2.12     dependent: assign(max_mem, 12000).
% 1.98/2.12     dependent: assign(pick_given_ratio, 4).
% 1.98/2.12     dependent: assign(stats_level, 1).
% 1.98/2.12     dependent: assign(max_seconds, 10800).
% 1.98/2.12  clear(print_given).
% 1.98/2.12  
% 1.98/2.12  list(usable).
% 1.98/2.12  0 [] A=A.
% 1.98/2.12  0 [] divide(A,divide(B,divide(C,divide(A,B))))=C.
% 1.98/2.12  0 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.98/2.12  0 [] inverse(A)=divide(divide(B,B),A).
% 1.98/2.12  0 [] multiply(a,b)!=multiply(b,a).
% 1.98/2.12  end_of_list.
% 1.98/2.12  
% 1.98/2.12  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.98/2.12  
% 1.98/2.12  All clauses are units, and equality is present; the
% 1.98/2.12  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.98/2.12  
% 1.98/2.12     dependent: set(knuth_bendix).
% 1.98/2.12     dependent: set(anl_eq).
% 1.98/2.12     dependent: set(para_from).
% 1.98/2.12     dependent: set(para_into).
% 1.98/2.12     dependent: clear(para_from_right).
% 1.98/2.12     dependent: clear(para_into_right).
% 1.98/2.12     dependent: set(para_from_vars).
% 1.98/2.12     dependent: set(eq_units_both_ways).
% 1.98/2.12     dependent: set(dynamic_demod_all).
% 1.98/2.12     dependent: set(dynamic_demod).
% 1.98/2.12     dependent: set(order_eq).
% 1.98/2.12     dependent: set(back_demod).
% 1.98/2.12     dependent: set(lrpo).
% 1.98/2.12  
% 1.98/2.12  ------------> process usable:
% 1.98/2.12  ** KEPT (pick-wt=7): 2 [copy,1,flip.1] multiply(b,a)!=multiply(a,b).
% 1.98/2.12  
% 1.98/2.12  ------------> process sos:
% 1.98/2.12  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.98/2.12  ** KEPT (pick-wt=11): 4 [] divide(A,divide(B,divide(C,divide(A,B))))=C.
% 1.98/2.12  ---> New Demodulator: 5 [new_demod,4] divide(A,divide(B,divide(C,divide(A,B))))=C.
% 1.98/2.12  ** KEPT (pick-wt=11): 6 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.98/2.12  ** KEPT (pick-wt=8): 7 [] inverse(A)=divide(divide(B,B),A).
% 1.98/2.12    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.98/2.12  >>>> Starting back demodulation with 5.
% 1.98/2.12  ** KEPT (pick-wt=11): 8 [copy,6,flip.1] divide(A,divide(divide(B,B),C))=multiply(A,C).
% 1.98/2.12  ** KEPT (pick-wt=8): 9 [copy,7,flip.1] divide(divide(A,A),B)=inverse(B).
% 1.98/2.12    Following clause subsumed by 6 during input processing: 0 [copy,8,flip.1] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.98/2.12    Following clause subsumed by 7 during input processing: 0 [copy,9,flip.1] inverse(A)=divide(divide(B,B),A).
% 1.98/2.12  
% 1.98/2.12  ======= end of input processing =======
% 1.98/2.12  
% 1.98/2.12  =========== start of search ===========
% 1.98/2.12  
% 1.98/2.12  -------- PROOF -------- 
% 1.98/2.12  
% 1.98/2.12  ----> UNIT CONFLICT at   0.00 sec ----> 257 [binary,256.1,2.1] $F.
% 1.98/2.12  
% 1.98/2.12  Length of proof is 15.  Level of proof is 8.
% 1.98/2.12  
% 1.98/2.12  ---------------- PROOF ----------------
% 1.98/2.12  % SZS status Unsatisfiable
% 1.98/2.12  % SZS output start Refutation
% See solution above
% 1.98/2.12  ------------ end of proof -------------
% 1.98/2.12  
% 1.98/2.12  
% 1.98/2.12  Search stopped by max_proofs option.
% 1.98/2.12  
% 1.98/2.12  
% 1.98/2.12  Search stopped by max_proofs option.
% 1.98/2.12  
% 1.98/2.12  ============ end of search ============
% 1.98/2.12  
% 1.98/2.12  -------------- statistics -------------
% 1.98/2.12  clauses given                 20
% 1.98/2.12  clauses generated            304
% 1.98/2.12  clauses kept                 197
% 1.98/2.12  clauses forward subsumed     313
% 1.98/2.12  clauses back subsumed          0
% 1.98/2.12  Kbytes malloced             1953
% 1.98/2.12  
% 1.98/2.12  ----------- times (seconds) -----------
% 1.98/2.12  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.98/2.12  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.98/2.12  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.98/2.12  
% 1.98/2.12  That finishes the proof of the theorem.
% 1.98/2.12  
% 1.98/2.12  Process 28837 finished Wed Jul 27 05:05:55 2022
% 1.98/2.12  Otter interrupted
% 1.98/2.12  PROOF FOUND
%------------------------------------------------------------------------------