TSTP Solution File: GRP523-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP523-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:10 EDT 2022

% Result   : Unsatisfiable 1.69s 1.87s
% Output   : Refutation 1.69s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   32 (  32 unt;   0 nHn;   3 RR)
%            Number of literals    :   32 (  31 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   72 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP523-1.p',unknown),
    [] ).

cnf(4,axiom,
    divide(A,divide(B,divide(C,divide(A,B)))) = C,
    file('GRP523-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = divide(A,divide(divide(C,C),B)),
    file('GRP523-1.p',unknown),
    [] ).

cnf(6,axiom,
    inverse(A) = divide(divide(B,B),A),
    file('GRP523-1.p',unknown),
    [] ).

cnf(7,plain,
    divide(A,divide(divide(B,B),C)) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(8,plain,
    divide(divide(A,A),B) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    divide(divide(A,A),B) = divide(divide(C,C),B),
    inference(para_into,[status(thm),theory(equality)],[6,6]),
    [iquote('para_into,6.1.1,6.1.1')] ).

cnf(35,plain,
    divide(A,inverse(divide(B,divide(A,divide(C,C))))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,8]),
    [iquote('para_into,3.1.1.2,8.1.1')] ).

cnf(82,plain,
    divide(A,inverse(B)) = multiply(A,B),
    inference(para_into,[status(thm),theory(equality)],[7,8]),
    [iquote('para_into,7.1.1.2,8.1.1')] ).

cnf(83,plain,
    divide(A,multiply(divide(B,B),C)) = multiply(A,divide(divide(D,D),C)),
    inference(para_into,[status(thm),theory(equality)],[7,7]),
    [iquote('para_into,7.1.1.2,7.1.1')] ).

cnf(89,plain,
    multiply(A,divide(B,divide(A,divide(C,C)))) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,4])]),
    [iquote('para_into,7.1.1,3.1.1,flip.1')] ).

cnf(95,plain,
    multiply(A,B) = divide(A,inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[82])]),
    [iquote('copy,82,flip.1')] ).

cnf(96,plain,
    multiply(A,divide(divide(B,B),C)) = divide(A,multiply(divide(D,D),C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[83])]),
    [iquote('copy,83,flip.1')] ).

cnf(126,plain,
    divide(A,A) = divide(B,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[9,4]),4]),
    [iquote('para_from,9.1.1,3.1.1.2.2,demod,4')] ).

cnf(141,plain,
    divide(A,divide(B,divide(C,C))) = divide(A,B),
    inference(para_from,[status(thm),theory(equality)],[126,4]),
    [iquote('para_from,126.1.1,3.1.1.2.2')] ).

cnf(142,plain,
    divide(A,divide(A,B)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[126,4]),141]),
    [iquote('para_from,126.1.1,3.1.1.2.2.2,demod,141')] ).

cnf(147,plain,
    multiply(A,divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[89]),141]),
    [iquote('back_demod,89,demod,141')] ).

cnf(149,plain,
    divide(A,inverse(divide(B,A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[35]),141]),
    [iquote('back_demod,35,demod,141')] ).

cnf(170,plain,
    multiply(divide(A,A),B) = B,
    inference(para_into,[status(thm),theory(equality)],[142,7]),
    [iquote('para_into,142.1.1,7.1.1')] ).

cnf(180,plain,
    multiply(A,divide(divide(B,B),C)) = divide(A,C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[96]),170]),
    [iquote('back_demod,96,demod,170')] ).

cnf(183,plain,
    multiply(divide(A,B),B) = A,
    inference(para_into,[status(thm),theory(equality)],[147,142]),
    [iquote('para_into,147.1.1.2,142.1.1')] ).

cnf(244,plain,
    divide(multiply(A,B),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[183,7]),180]),
    [iquote('para_into,183.1.1.1,7.1.1,demod,180')] ).

cnf(256,plain,
    multiply(A,B) = multiply(B,A),
    inference(para_from,[status(thm),theory(equality)],[244,147]),
    [iquote('para_from,244.1.1,147.1.1.2')] ).

cnf(259,plain,
    divide(multiply(A,B),A) = B,
    inference(para_from,[status(thm),theory(equality)],[244,142]),
    [iquote('para_from,244.1.1,142.1.1.2')] ).

cnf(281,plain,
    multiply(divide(A,B),C) = divide(A,divide(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[259,4])]),
    [iquote('para_from,259.1.1,3.1.1.2.2,flip.1')] ).

cnf(320,plain,
    multiply(A,B) = divide(B,inverse(A)),
    inference(para_into,[status(thm),theory(equality)],[95,256]),
    [iquote('para_into,95.1.1,256.1.1')] ).

cnf(322,plain,
    divide(A,inverse(B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[320])]),
    [iquote('copy,320,flip.1')] ).

cnf(329,plain,
    divide(a3,divide(inverse(b3),c3)) != multiply(a3,multiply(b3,c3)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[95,1]),281]),
    [iquote('para_from,95.1.1,1.1.1.1,demod,281')] ).

cnf(342,plain,
    inverse(divide(A,B)) = divide(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[149,142])]),
    [iquote('para_from,149.1.1,142.1.1.2,flip.1')] ).

cnf(502,plain,
    inverse(multiply(A,B)) = divide(inverse(A),B),
    inference(para_into,[status(thm),theory(equality)],[342,322]),
    [iquote('para_into,342.1.1.1,322.1.1')] ).

cnf(696,plain,
    divide(A,divide(inverse(B),C)) = multiply(A,multiply(B,C)),
    inference(para_from,[status(thm),theory(equality)],[502,82]),
    [iquote('para_from,502.1.1,82.1.1.2')] ).

cnf(697,plain,
    $false,
    inference(binary,[status(thm)],[696,329]),
    [iquote('binary,696.1,329.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.11  % Problem  : GRP523-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n016.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:51:22 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.69/1.87  ----- Otter 3.3f, August 2004 -----
% 1.69/1.87  The process was started by sandbox2 on n016.cluster.edu,
% 1.69/1.87  Wed Jul 27 05:51:22 2022
% 1.69/1.87  The command was "./otter".  The process ID is 14361.
% 1.69/1.87  
% 1.69/1.87  set(prolog_style_variables).
% 1.69/1.87  set(auto).
% 1.69/1.87     dependent: set(auto1).
% 1.69/1.87     dependent: set(process_input).
% 1.69/1.87     dependent: clear(print_kept).
% 1.69/1.87     dependent: clear(print_new_demod).
% 1.69/1.87     dependent: clear(print_back_demod).
% 1.69/1.87     dependent: clear(print_back_sub).
% 1.69/1.87     dependent: set(control_memory).
% 1.69/1.87     dependent: assign(max_mem, 12000).
% 1.69/1.87     dependent: assign(pick_given_ratio, 4).
% 1.69/1.87     dependent: assign(stats_level, 1).
% 1.69/1.87     dependent: assign(max_seconds, 10800).
% 1.69/1.87  clear(print_given).
% 1.69/1.87  
% 1.69/1.87  list(usable).
% 1.69/1.87  0 [] A=A.
% 1.69/1.87  0 [] divide(A,divide(B,divide(C,divide(A,B))))=C.
% 1.69/1.87  0 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.69/1.87  0 [] inverse(A)=divide(divide(B,B),A).
% 1.69/1.87  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.69/1.87  end_of_list.
% 1.69/1.87  
% 1.69/1.87  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.69/1.87  
% 1.69/1.87  All clauses are units, and equality is present; the
% 1.69/1.87  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.69/1.87  
% 1.69/1.87     dependent: set(knuth_bendix).
% 1.69/1.87     dependent: set(anl_eq).
% 1.69/1.87     dependent: set(para_from).
% 1.69/1.87     dependent: set(para_into).
% 1.69/1.87     dependent: clear(para_from_right).
% 1.69/1.87     dependent: clear(para_into_right).
% 1.69/1.87     dependent: set(para_from_vars).
% 1.69/1.87     dependent: set(eq_units_both_ways).
% 1.69/1.87     dependent: set(dynamic_demod_all).
% 1.69/1.87     dependent: set(dynamic_demod).
% 1.69/1.87     dependent: set(order_eq).
% 1.69/1.87     dependent: set(back_demod).
% 1.69/1.87     dependent: set(lrpo).
% 1.69/1.87  
% 1.69/1.87  ------------> process usable:
% 1.69/1.87  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.69/1.87  
% 1.69/1.87  ------------> process sos:
% 1.69/1.87  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.69/1.87  ** KEPT (pick-wt=11): 3 [] divide(A,divide(B,divide(C,divide(A,B))))=C.
% 1.69/1.87  ---> New Demodulator: 4 [new_demod,3] divide(A,divide(B,divide(C,divide(A,B))))=C.
% 1.69/1.87  ** KEPT (pick-wt=11): 5 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.69/1.87  ** KEPT (pick-wt=8): 6 [] inverse(A)=divide(divide(B,B),A).
% 1.69/1.87    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.69/1.87  >>>> Starting back demodulation with 4.
% 1.69/1.87  ** KEPT (pick-wt=11): 7 [copy,5,flip.1] divide(A,divide(divide(B,B),C))=multiply(A,C).
% 1.69/1.87  ** KEPT (pick-wt=8): 8 [copy,6,flip.1] divide(divide(A,A),B)=inverse(B).
% 1.69/1.87    Following clause subsumed by 5 during input processing: 0 [copy,7,flip.1] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.69/1.87    Following clause subsumed by 6 during input processing: 0 [copy,8,flip.1] inverse(A)=divide(divide(B,B),A).
% 1.69/1.87  
% 1.69/1.87  ======= end of input processing =======
% 1.69/1.87  
% 1.69/1.87  =========== start of search ===========
% 1.69/1.87  
% 1.69/1.87  -------- PROOF -------- 
% 1.69/1.87  
% 1.69/1.87  ----> UNIT CONFLICT at   0.02 sec ----> 697 [binary,696.1,329.1] $F.
% 1.69/1.87  
% 1.69/1.87  Length of proof is 27.  Level of proof is 12.
% 1.69/1.87  
% 1.69/1.87  ---------------- PROOF ----------------
% 1.69/1.87  % SZS status Unsatisfiable
% 1.69/1.87  % SZS output start Refutation
% See solution above
% 1.69/1.87  ------------ end of proof -------------
% 1.69/1.87  
% 1.69/1.87  
% 1.69/1.87  Search stopped by max_proofs option.
% 1.69/1.87  
% 1.69/1.87  
% 1.69/1.87  Search stopped by max_proofs option.
% 1.69/1.87  
% 1.69/1.87  ============ end of search ============
% 1.69/1.87  
% 1.69/1.87  -------------- statistics -------------
% 1.69/1.87  clauses given                 62
% 1.69/1.87  clauses generated           1502
% 1.69/1.87  clauses kept                 521
% 1.69/1.87  clauses forward subsumed    1540
% 1.69/1.87  clauses back subsumed          0
% 1.69/1.87  Kbytes malloced             2929
% 1.69/1.87  
% 1.69/1.87  ----------- times (seconds) -----------
% 1.69/1.87  user CPU time          0.02          (0 hr, 0 min, 0 sec)
% 1.69/1.87  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.69/1.87  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.69/1.87  
% 1.69/1.87  That finishes the proof of the theorem.
% 1.69/1.87  
% 1.69/1.87  Process 14361 finished Wed Jul 27 05:51:23 2022
% 1.69/1.87  Otter interrupted
% 1.69/1.87  PROOF FOUND
%------------------------------------------------------------------------------