TSTP Solution File: GRP499-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP499-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:07 EDT 2022

% Result   : Unsatisfiable 1.80s 2.00s
% Output   : Refutation 1.80s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   28
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   58 (  58 unt;   0 nHn;   3 RR)
%            Number of literals    :   58 (  57 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  186 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('GRP499-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(inverse(b1),b1) != multiply(inverse(a1),a1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D))))) = C,
    file('GRP499-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP499-1.p',unknown),
    [] ).

cnf(8,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(C,B)),multiply(double_divide(C,D),A))) = D,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),8,8]),
    [iquote('back_demod,4,demod,8,8')] ).

cnf(15,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(inverse(C),B)),multiply(D,A))) = multiply(double_divide(E,double_divide(F,E)),multiply(double_divide(F,D),C)),
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.2.2.1,9.1.1')] ).

cnf(16,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,C),D)) = double_divide(inverse(E),multiply(double_divide(F,double_divide(inverse(D),F)),multiply(C,E))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[15])]),
    [iquote('copy,15,flip.1')] ).

cnf(17,plain,
    inverse(A) = multiply(multiply(double_divide(B,double_divide(C,B)),multiply(double_divide(C,A),D)),inverse(D)),
    inference(para_from,[status(thm),theory(equality)],[9,8]),
    [iquote('para_from,9.1.1,7.1.1.1')] ).

cnf(18,plain,
    multiply(multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,C),D)),inverse(D)) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[17])]),
    [iquote('copy,17,flip.1')] ).

cnf(20,plain,
    multiply(multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(C,D)),E)),inverse(E)) = multiply(D,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,8])]),
    [iquote('para_into,17.1.1,7.1.1,flip.1')] ).

cnf(60,plain,
    multiply(multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(C,D)),double_divide(E,F))),multiply(F,E)) = multiply(D,C),
    inference(para_into,[status(thm),theory(equality)],[20,8]),
    [iquote('para_into,20.1.1.2,7.1.1')] ).

cnf(171,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(inverse(C),D)),C)) = D,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,9])]),
    [iquote('para_into,15.1.1,9.1.1,flip.1')] ).

cnf(228,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(multiply(C,D),E)),double_divide(D,C))) = E,
    inference(para_into,[status(thm),theory(equality)],[171,8]),
    [iquote('para_into,170.1.1.2.1.2.1,7.1.1')] ).

cnf(230,plain,
    multiply(multiply(double_divide(A,double_divide(B,A)),C),inverse(multiply(double_divide(D,double_divide(inverse(E),C)),E))) = multiply(B,D),
    inference(para_from,[status(thm),theory(equality)],[171,20]),
    [iquote('para_from,170.1.1,20.1.1.1.2')] ).

cnf(234,plain,
    double_divide(inverse(multiply(double_divide(A,double_divide(inverse(B),C)),B)),multiply(double_divide(D,double_divide(E,D)),C)) = double_divide(A,E),
    inference(para_from,[status(thm),theory(equality)],[171,9]),
    [iquote('para_from,170.1.1,9.1.1.2.2')] ).

cnf(243,plain,
    double_divide(inverse(multiply(double_divide(A,double_divide(multiply(B,C),D)),double_divide(C,B))),multiply(double_divide(E,double_divide(F,E)),D)) = double_divide(A,F),
    inference(para_from,[status(thm),theory(equality)],[228,9]),
    [iquote('para_from,228.1.1,9.1.1.2.2')] ).

cnf(267,plain,
    double_divide(inverse(A),double_divide(inverse(B),multiply(double_divide(C,double_divide(inverse(A),C)),multiply(D,B)))) = D,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[16,15]),171]),
    [iquote('para_from,16.1.1,15.1.1.2,demod,171')] ).

cnf(283,plain,
    double_divide(inverse(A),double_divide(B,inverse(A))) = double_divide(C,double_divide(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[267,228]),243]),
    [iquote('para_into,267.1.1.2.2.2,228.1.1,demod,243')] ).

cnf(302,plain,
    double_divide(A,double_divide(B,A)) = double_divide(C,double_divide(B,C)),
    inference(para_into,[status(thm),theory(equality)],[283,283]),
    [iquote('para_into,283.1.1,283.1.1')] ).

cnf(330,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(C,double_divide(inverse(D),C)),D)) = B,
    inference(para_from,[status(thm),theory(equality)],[302,171]),
    [iquote('para_from,302.1.1,170.1.1.2.1')] ).

cnf(349,plain,
    multiply(double_divide(A,B),B) = multiply(double_divide(A,C),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[302,60]),60]),
    [iquote('para_from,302.1.1,59.1.1.1.2.1.2,demod,60')] ).

cnf(378,plain,
    multiply(double_divide(A,double_divide(B,A)),double_divide(B,C)) = multiply(double_divide(C,D),D),
    inference(para_into,[status(thm),theory(equality)],[349,302]),
    [iquote('para_into,349.1.1.1,302.1.1')] ).

cnf(383,plain,
    multiply(double_divide(A,B),B) = multiply(double_divide(C,double_divide(D,C)),double_divide(D,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[378])]),
    [iquote('copy,378,flip.1')] ).

cnf(407,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(C,B)),multiply(double_divide(C,D),D))) = A,
    inference(para_from,[status(thm),theory(equality)],[349,9]),
    [iquote('para_from,349.1.1,9.1.1.2.2')] ).

cnf(641,plain,
    multiply(double_divide(A,double_divide(inverse(B),multiply(double_divide(C,D),D))),B) = double_divide(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[407,234])]),
    [iquote('para_into,407.1.1,234.1.1,flip.1')] ).

cnf(713,plain,
    multiply(double_divide(A,double_divide(B,A)),double_divide(multiply(double_divide(C,D),D),C)) = B,
    inference(para_from,[status(thm),theory(equality)],[641,330]),
    [iquote('para_from,641.1.1,330.1.1.2')] ).

cnf(762,plain,
    double_divide(multiply(double_divide(A,B),B),A) = multiply(C,multiply(double_divide(C,D),D)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[713,641]),8]),
    [iquote('para_into,712.1.1,641.1.1,demod,8')] ).

cnf(765,plain,
    multiply(A,multiply(double_divide(A,B),B)) = double_divide(multiply(double_divide(C,D),D),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[762])]),
    [iquote('copy,762,flip.1')] ).

cnf(821,plain,
    double_divide(inverse(A),double_divide(inverse(multiply(double_divide(B,C),C)),inverse(A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[765,267]),713]),
    [iquote('para_from,765.1.1,267.1.1.2.2.2,demod,713')] ).

cnf(830,plain,
    multiply(A,inverse(multiply(double_divide(double_divide(A,B),C),C))) = inverse(B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[765,18]),713]),
    [iquote('para_from,765.1.1,18.1.1.1.2,demod,713')] ).

cnf(918,plain,
    double_divide(A,double_divide(inverse(multiply(double_divide(B,C),C)),A)) = B,
    inference(para_into,[status(thm),theory(equality)],[821,302]),
    [iquote('para_into,821.1.1,302.1.1')] ).

cnf(933,plain,
    double_divide(double_divide(inverse(A),multiply(B,multiply(C,A))),C) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[918,267]),918]),
    [iquote('para_into,917.1.1.2,267.1.1,demod,918')] ).

cnf(951,plain,
    double_divide(inverse(A),multiply(B,multiply(double_divide(inverse(multiply(double_divide(B,C),C)),D),D))) = A,
    inference(para_from,[status(thm),theory(equality)],[918,407]),
    [iquote('para_from,917.1.1,407.1.1.2.1')] ).

cnf(958,plain,
    multiply(double_divide(inverse(multiply(double_divide(A,B),B)),C),C) = inverse(A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[918,8])]),
    [iquote('para_from,917.1.1,7.1.1.1,flip.1')] ).

cnf(964,plain,
    double_divide(inverse(A),multiply(B,inverse(B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[951]),958]),
    [iquote('back_demod,951,demod,958')] ).

cnf(975,plain,
    double_divide(inverse(A),multiply(inverse(B),B)) = A,
    inference(para_into,[status(thm),theory(equality)],[964,230]),
    [iquote('para_into,964.1.1.2,230.1.1')] ).

cnf(1004,plain,
    multiply(multiply(A,inverse(A)),inverse(B)) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[964,8])]),
    [iquote('para_from,964.1.1,7.1.1.1,flip.1')] ).

cnf(1058,plain,
    multiply(double_divide(A,double_divide(B,A)),double_divide(multiply(C,multiply(inverse(D),D)),inverse(C))) = B,
    inference(para_from,[status(thm),theory(equality)],[975,713]),
    [iquote('para_from,974.1.1,712.1.1.2.1.1')] ).

cnf(1071,plain,
    multiply(A,multiply(inverse(B),B)) = multiply(double_divide(C,double_divide(D,C)),double_divide(D,inverse(A))),
    inference(para_from,[status(thm),theory(equality)],[975,383]),
    [iquote('para_from,974.1.1,383.1.1.1')] ).

cnf(1076,plain,
    multiply(multiply(inverse(A),A),inverse(B)) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[975,8])]),
    [iquote('para_from,974.1.1,7.1.1.1,flip.1')] ).

cnf(1098,plain,
    multiply(double_divide(A,double_divide(B,A)),double_divide(B,inverse(C))) = multiply(C,multiply(inverse(D),D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1071])]),
    [iquote('copy,1071,flip.1')] ).

cnf(1136,plain,
    double_divide(inverse(A),inverse(multiply(inverse(B),B))) = A,
    inference(para_from,[status(thm),theory(equality)],[1076,964]),
    [iquote('para_from,1076.1.1,964.1.1.2')] ).

cnf(1246,plain,
    multiply(inverse(A),inverse(multiply(double_divide(A,B),B))) = inverse(inverse(multiply(inverse(C),C))),
    inference(para_from,[status(thm),theory(equality)],[1136,830]),
    [iquote('para_from,1136.1.1,830.1.1.2.1.1.1')] ).

cnf(1250,plain,
    multiply(A,inverse(multiply(inverse(B),B))) = multiply(double_divide(inverse(A),C),C),
    inference(para_from,[status(thm),theory(equality)],[1136,349]),
    [iquote('para_from,1136.1.1,349.1.1.1')] ).

cnf(1332,plain,
    inverse(multiply(A,B)) = double_divide(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[933,975])]),
    [iquote('para_into,933.1.1.1,974.1.1,flip.1')] ).

cnf(1357,plain,
    multiply(A,double_divide(B,inverse(B))) = multiply(double_divide(inverse(A),C),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1250]),1332]),
    [iquote('back_demod,1250,demod,1332')] ).

cnf(1358,plain,
    multiply(inverse(A),double_divide(B,double_divide(A,B))) = multiply(inverse(C),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1246]),1332,1332,8]),
    [iquote('back_demod,1246,demod,1332,1332,8')] ).

cnf(1412,plain,
    inverse(inverse(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[1332,1076]),975]),
    [iquote('para_into,1331.1.1.1,1076.1.1,demod,975')] ).

cnf(1437,plain,
    multiply(multiply(A,inverse(A)),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1412,1004]),1412]),
    [iquote('para_from,1411.1.1,1004.1.1.2,demod,1412')] ).

cnf(1463,plain,
    multiply(double_divide(inverse(A),A),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[1437,1437]),1332]),
    [iquote('para_into,1437.1.1.1,1437.1.1,demod,1332')] ).

cnf(1499,plain,
    multiply(double_divide(A,double_divide(B,A)),double_divide(B,inverse(C))) = C,
    inference(para_into,[status(thm),theory(equality)],[1463,383]),
    [iquote('para_into,1463.1.1,383.1.1')] ).

cnf(1501,plain,
    multiply(double_divide(inverse(A),B),B) = A,
    inference(para_into,[status(thm),theory(equality)],[1463,349]),
    [iquote('para_into,1463.1.1,349.1.1')] ).

cnf(1503,plain,
    multiply(A,multiply(inverse(B),B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1098]),1499])]),
    [iquote('back_demod,1098,demod,1499,flip.1')] ).

cnf(1509,plain,
    multiply(A,double_divide(B,inverse(B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1357]),1501]),
    [iquote('back_demod,1357,demod,1501')] ).

cnf(1525,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1058]),1503,1509]),
    [iquote('back_demod,1058,demod,1503,1509')] ).

cnf(1548,plain,
    multiply(inverse(A),A) = multiply(inverse(B),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1358]),1525]),
    [iquote('back_demod,1358,demod,1525')] ).

cnf(1549,plain,
    $false,
    inference(binary,[status(thm)],[1548,2]),
    [iquote('binary,1548.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : GRP499-1 : TPTP v8.1.0. Released v2.6.0.
% 0.04/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n003.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 04:58:41 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.80/2.00  ----- Otter 3.3f, August 2004 -----
% 1.80/2.00  The process was started by sandbox2 on n003.cluster.edu,
% 1.80/2.00  Wed Jul 27 04:58:41 2022
% 1.80/2.00  The command was "./otter".  The process ID is 8928.
% 1.80/2.00  
% 1.80/2.00  set(prolog_style_variables).
% 1.80/2.00  set(auto).
% 1.80/2.00     dependent: set(auto1).
% 1.80/2.00     dependent: set(process_input).
% 1.80/2.00     dependent: clear(print_kept).
% 1.80/2.00     dependent: clear(print_new_demod).
% 1.80/2.00     dependent: clear(print_back_demod).
% 1.80/2.00     dependent: clear(print_back_sub).
% 1.80/2.00     dependent: set(control_memory).
% 1.80/2.00     dependent: assign(max_mem, 12000).
% 1.80/2.00     dependent: assign(pick_given_ratio, 4).
% 1.80/2.00     dependent: assign(stats_level, 1).
% 1.80/2.00     dependent: assign(max_seconds, 10800).
% 1.80/2.00  clear(print_given).
% 1.80/2.00  
% 1.80/2.00  list(usable).
% 1.80/2.00  0 [] A=A.
% 1.80/2.00  0 [] double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D)))))=C.
% 1.80/2.00  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.80/2.00  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1).
% 1.80/2.00  end_of_list.
% 1.80/2.00  
% 1.80/2.00  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.80/2.00  
% 1.80/2.00  All clauses are units, and equality is present; the
% 1.80/2.00  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.80/2.00  
% 1.80/2.00     dependent: set(knuth_bendix).
% 1.80/2.00     dependent: set(anl_eq).
% 1.80/2.00     dependent: set(para_from).
% 1.80/2.00     dependent: set(para_into).
% 1.80/2.00     dependent: clear(para_from_right).
% 1.80/2.00     dependent: clear(para_into_right).
% 1.80/2.00     dependent: set(para_from_vars).
% 1.80/2.00     dependent: set(eq_units_both_ways).
% 1.80/2.00     dependent: set(dynamic_demod_all).
% 1.80/2.00     dependent: set(dynamic_demod).
% 1.80/2.00     dependent: set(order_eq).
% 1.80/2.00     dependent: set(back_demod).
% 1.80/2.00     dependent: set(lrpo).
% 1.80/2.00  
% 1.80/2.00  ------------> process usable:
% 1.80/2.00  ** KEPT (pick-wt=9): 2 [copy,1,flip.1] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1).
% 1.80/2.00  
% 1.80/2.00  ------------> process sos:
% 1.80/2.00  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.80/2.00  ** KEPT (pick-wt=18): 4 [] double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D)))))=C.
% 1.80/2.00  ---> New Demodulator: 5 [new_demod,4] double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D)))))=C.
% 1.80/2.00  ** KEPT (pick-wt=8): 7 [copy,6,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.80/2.00  ---> New Demodulator: 8 [new_demod,7] inverse(double_divide(A,B))=multiply(B,A).
% 1.80/2.00    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.80/2.00  >>>> Starting back demodulation with 5.
% 1.80/2.00  >>>> Starting back demodulation with 8.
% 1.80/2.00      >> back demodulating 4 with 8.
% 1.80/2.00  >>>> Starting back demodulation with 10.
% 1.80/2.00  
% 1.80/2.00  ======= end of input processing =======
% 1.80/2.00  
% 1.80/2.00  =========== start of search ===========
% 1.80/2.00  
% 1.80/2.00  
% 1.80/2.00  Resetting weight limit to 28.
% 1.80/2.00  
% 1.80/2.00  
% 1.80/2.00  Resetting weight limit to 28.
% 1.80/2.00  
% 1.80/2.00  sos_size=159
% 1.80/2.00  
% 1.80/2.00  
% 1.80/2.00  Resetting weight limit to 19.
% 1.80/2.00  
% 1.80/2.00  
% 1.80/2.00  Resetting weight limit to 19.
% 1.80/2.00  
% 1.80/2.00  sos_size=544
% 1.80/2.00  
% 1.80/2.00  
% 1.80/2.00  Resetting weight limit to 14.
% 1.80/2.00  
% 1.80/2.00  
% 1.80/2.00  Resetting weight limit to 14.
% 1.80/2.00  
% 1.80/2.00  sos_size=855
% 1.80/2.00  
% 1.80/2.00  -------- PROOF -------- 
% 1.80/2.00  
% 1.80/2.00  ----> UNIT CONFLICT at   0.11 sec ----> 1549 [binary,1548.1,2.1] $F.
% 1.80/2.00  
% 1.80/2.00  Length of proof is 54.  Level of proof is 27.
% 1.80/2.00  
% 1.80/2.00  ---------------- PROOF ----------------
% 1.80/2.00  % SZS status Unsatisfiable
% 1.80/2.00  % SZS output start Refutation
% See solution above
% 1.80/2.01  ------------ end of proof -------------
% 1.80/2.01  
% 1.80/2.01  
% 1.80/2.01  Search stopped by max_proofs option.
% 1.80/2.01  
% 1.80/2.01  
% 1.80/2.01  Search stopped by max_proofs option.
% 1.80/2.01  
% 1.80/2.01  ============ end of search ============
% 1.80/2.01  
% 1.80/2.01  -------------- statistics -------------
% 1.80/2.01  clauses given                 68
% 1.80/2.01  clauses generated           3545
% 1.80/2.01  clauses kept                1127
% 1.80/2.01  clauses forward subsumed    1275
% 1.80/2.01  clauses back subsumed          5
% 1.80/2.01  Kbytes malloced            11718
% 1.80/2.01  
% 1.80/2.01  ----------- times (seconds) -----------
% 1.80/2.01  user CPU time          0.11          (0 hr, 0 min, 0 sec)
% 1.80/2.01  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.80/2.01  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.80/2.01  
% 1.80/2.01  That finishes the proof of the theorem.
% 1.80/2.01  
% 1.80/2.01  Process 8928 finished Wed Jul 27 04:58:43 2022
% 1.80/2.01  Otter interrupted
% 1.80/2.01  PROOF FOUND
%------------------------------------------------------------------------------