TSTP Solution File: GRP497-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP497-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n021.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:07 EDT 2022

% Result   : Unsatisfiable 1.71s 1.92s
% Output   : Refutation 1.71s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   36 (  36 unt;   0 nHn;   5 RR)
%            Number of literals    :   36 (  35 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   60 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(identity,a2) != a2,
    file('GRP497-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity)) = C,
    file('GRP497-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP497-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP497-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP497-1.p',unknown),
    [] ).

cnf(10,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(a2,identity),identity) != a2,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6]),
    [iquote('back_demod,1,demod,6')] ).

cnf(13,plain,
    double_divide(double_divide(identity,identity),double_divide(double_divide(A,double_divide(B,A)),identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.1.2,10.1.1')] ).

cnf(15,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,double_divide(A,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(B,identity))))),identity)) = D,
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2,3.1.1')] ).

cnf(19,plain,
    double_divide(double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(B,C)),identity),double_divide(D,identity))),double_divide(double_divide(D,B),identity)) = double_divide(identity,double_divide(C,double_divide(A,identity))),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.2.1.2,3.1.1')] ).

cnf(21,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(identity,identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.2.1,10.1.1')] ).

cnf(25,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,10])]),
    [iquote('para_into,3.1.1,10.1.1,flip.1')] ).

cnf(27,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[21]),25]),
    [iquote('back_demod,21,demod,25')] ).

cnf(29,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(B,A)),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),25]),
    [iquote('back_demod,13,demod,25')] ).

cnf(36,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),identity) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(para_into,[status(thm),theory(equality)],[27,27]),
    [iquote('para_into,27.1.1.1.2.2,27.1.1')] ).

cnf(37,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[27]),36]),
    [iquote('back_demod,27,demod,36')] ).

cnf(41,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,identity),identity),identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[29,10]),
    [iquote('para_into,29.1.1.2.1.2,10.1.1')] ).

cnf(91,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(double_divide(identity,A),identity))),double_divide(B,identity)) = double_divide(double_divide(C,double_divide(A,D)),double_divide(B,double_divide(identity,double_divide(D,double_divide(C,identity))))),
    inference(para_from,[status(thm),theory(equality)],[15,3]),
    [iquote('para_from,15.1.1,3.1.1.2.1')] ).

cnf(92,plain,
    double_divide(double_divide(A,double_divide(B,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(A,identity))))) = double_divide(double_divide(identity,double_divide(identity,double_divide(double_divide(identity,B),identity))),double_divide(D,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[91])]),
    [iquote('copy,91,flip.1')] ).

cnf(93,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(para_from,[status(thm),theory(equality)],[41,37]),
    [iquote('para_from,41.1.1,37.1.1.2')] ).

cnf(103,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(identity,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[41,29])]),
    [iquote('para_from,41.1.1,29.1.1.2.1,flip.1')] ).

cnf(104,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[93])]),
    [iquote('copy,93,flip.1')] ).

cnf(119,plain,
    double_divide(identity,double_divide(a2,identity)) != a2,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),103]),
    [iquote('back_demod,12,demod,103')] ).

cnf(128,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(double_divide(B,double_divide(A,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(B,identity))))),identity)) = D,
    inference(para_from,[status(thm),theory(equality)],[93,15]),
    [iquote('para_from,93.1.1,15.1.1.1')] ).

cnf(142,plain,
    double_divide(A,double_divide(identity,A)) = identity,
    inference(para_from,[status(thm),theory(equality)],[104,10]),
    [iquote('para_from,104.1.1,10.1.1.2')] ).

cnf(146,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(double_divide(A,double_divide(identity,B)),identity)) = B,
    inference(para_from,[status(thm),theory(equality)],[104,3]),
    [iquote('para_from,104.1.1,3.1.1.2.1.2')] ).

cnf(157,plain,
    double_divide(double_divide(identity,double_divide(double_divide(identity,double_divide(A,identity)),double_divide(B,identity))),double_divide(identity,double_divide(B,identity))) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,25]),103,103]),
    [iquote('para_into,19.1.1.1.2.1.1.2,24.1.1,demod,103,103')] ).

cnf(171,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(double_divide(A,B),identity)) = double_divide(identity,double_divide(identity,double_divide(B,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,10]),25]),
    [iquote('para_into,19.1.1.1.2.1.1,10.1.1,demod,25')] ).

cnf(206,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(identity,A),identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[146]),171]),
    [iquote('back_demod,146,demod,171')] ).

cnf(213,plain,
    double_divide(double_divide(A,double_divide(B,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(A,identity))))) = double_divide(B,double_divide(D,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[92]),206]),
    [iquote('back_demod,92,demod,206')] ).

cnf(224,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(A,double_divide(B,identity)),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[128]),213]),
    [iquote('back_demod,128,demod,213')] ).

cnf(248,plain,
    double_divide(double_divide(identity,double_divide(double_divide(identity,A),double_divide(B,identity))),double_divide(identity,double_divide(B,identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[142,3]),103]),
    [iquote('para_from,142.1.1,3.1.1.2.1.2,demod,103')] ).

cnf(251,plain,
    double_divide(identity,double_divide(identity,double_divide(A,identity))) = double_divide(A,identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[157]),248])]),
    [iquote('back_demod,157,demod,248,flip.1')] ).

cnf(261,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(A,B),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[171]),251,251]),
    [iquote('back_demod,170,demod,251,251')] ).

cnf(290,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[224]),261,103]),
    [iquote('back_demod,224,demod,261,103')] ).

cnf(292,plain,
    $false,
    inference(binary,[status(thm)],[290,119]),
    [iquote('binary,290.1,119.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP497-1 : TPTP v8.1.0. Released v2.6.0.
% 0.11/0.13  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n021.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:24:08 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.71/1.92  ----- Otter 3.3f, August 2004 -----
% 1.71/1.92  The process was started by sandbox on n021.cluster.edu,
% 1.71/1.92  Wed Jul 27 05:24:08 2022
% 1.71/1.92  The command was "./otter".  The process ID is 14563.
% 1.71/1.92  
% 1.71/1.92  set(prolog_style_variables).
% 1.71/1.92  set(auto).
% 1.71/1.92     dependent: set(auto1).
% 1.71/1.92     dependent: set(process_input).
% 1.71/1.92     dependent: clear(print_kept).
% 1.71/1.92     dependent: clear(print_new_demod).
% 1.71/1.92     dependent: clear(print_back_demod).
% 1.71/1.92     dependent: clear(print_back_sub).
% 1.71/1.92     dependent: set(control_memory).
% 1.71/1.92     dependent: assign(max_mem, 12000).
% 1.71/1.92     dependent: assign(pick_given_ratio, 4).
% 1.71/1.92     dependent: assign(stats_level, 1).
% 1.71/1.92     dependent: assign(max_seconds, 10800).
% 1.71/1.92  clear(print_given).
% 1.71/1.92  
% 1.71/1.92  list(usable).
% 1.71/1.92  0 [] A=A.
% 1.71/1.92  0 [] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 1.71/1.92  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.71/1.92  0 [] inverse(A)=double_divide(A,identity).
% 1.71/1.92  0 [] identity=double_divide(A,inverse(A)).
% 1.71/1.92  0 [] multiply(identity,a2)!=a2.
% 1.71/1.92  end_of_list.
% 1.71/1.92  
% 1.71/1.92  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.71/1.92  
% 1.71/1.92  All clauses are units, and equality is present; the
% 1.71/1.92  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.71/1.92  
% 1.71/1.92     dependent: set(knuth_bendix).
% 1.71/1.92     dependent: set(anl_eq).
% 1.71/1.92     dependent: set(para_from).
% 1.71/1.92     dependent: set(para_into).
% 1.71/1.92     dependent: clear(para_from_right).
% 1.71/1.92     dependent: clear(para_into_right).
% 1.71/1.92     dependent: set(para_from_vars).
% 1.71/1.92     dependent: set(eq_units_both_ways).
% 1.71/1.92     dependent: set(dynamic_demod_all).
% 1.71/1.92     dependent: set(dynamic_demod).
% 1.71/1.92     dependent: set(order_eq).
% 1.71/1.92     dependent: set(back_demod).
% 1.71/1.92     dependent: set(lrpo).
% 1.71/1.92  
% 1.71/1.92  ------------> process usable:
% 1.71/1.92  ** KEPT (pick-wt=5): 1 [] multiply(identity,a2)!=a2.
% 1.71/1.92  
% 1.71/1.92  ------------> process sos:
% 1.71/1.92  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.71/1.92  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 1.71/1.92  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 1.71/1.92  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.71/1.92  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.71/1.92  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.71/1.92  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.71/1.92  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.71/1.92  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.71/1.92    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.71/1.92  >>>> Starting back demodulation with 4.
% 1.71/1.92  >>>> Starting back demodulation with 6.
% 1.71/1.92      >> back demodulating 1 with 6.
% 1.71/1.92  >>>> Starting back demodulation with 8.
% 1.71/1.92  >>>> Starting back demodulation with 11.
% 1.71/1.92  
% 1.71/1.92  ======= end of input processing =======
% 1.71/1.92  
% 1.71/1.92  =========== start of search ===========
% 1.71/1.92  
% 1.71/1.92  -------- PROOF -------- 
% 1.71/1.92  
% 1.71/1.92  ----> UNIT CONFLICT at   0.01 sec ----> 292 [binary,290.1,119.1] $F.
% 1.71/1.92  
% 1.71/1.92  Length of proof is 30.  Level of proof is 12.
% 1.71/1.92  
% 1.71/1.92  ---------------- PROOF ----------------
% 1.71/1.92  % SZS status Unsatisfiable
% 1.71/1.92  % SZS output start Refutation
% See solution above
% 1.71/1.92  ------------ end of proof -------------
% 1.71/1.92  
% 1.71/1.92  
% 1.71/1.92  Search stopped by max_proofs option.
% 1.71/1.92  
% 1.71/1.92  
% 1.71/1.92  Search stopped by max_proofs option.
% 1.71/1.92  
% 1.71/1.92  ============ end of search ============
% 1.71/1.92  
% 1.71/1.92  -------------- statistics -------------
% 1.71/1.92  clauses given                 17
% 1.71/1.92  clauses generated            191
% 1.71/1.92  clauses kept                 166
% 1.71/1.92  clauses forward subsumed     140
% 1.71/1.92  clauses back subsumed          1
% 1.71/1.92  Kbytes malloced             1953
% 1.71/1.92  
% 1.71/1.92  ----------- times (seconds) -----------
% 1.71/1.92  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.71/1.92  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.71/1.92  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.71/1.92  
% 1.71/1.92  That finishes the proof of the theorem.
% 1.71/1.92  
% 1.71/1.92  Process 14563 finished Wed Jul 27 05:24:09 2022
% 1.71/1.92  Otter interrupted
% 1.71/1.92  PROOF FOUND
%------------------------------------------------------------------------------