TSTP Solution File: GRP494-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP494-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:18 EDT 2022

% Result   : Unsatisfiable 0.72s 1.08s
% Output   : Refutation 0.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP494-1 : TPTP v8.1.0. Released v2.6.0.
% 0.13/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n007.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Mon Jun 13 04:26:53 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.42/1.08  *** allocated 10000 integers for termspace/termends
% 0.42/1.08  *** allocated 10000 integers for clauses
% 0.42/1.08  *** allocated 10000 integers for justifications
% 0.42/1.08  Bliksem 1.12
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Automatic Strategy Selection
% 0.42/1.08  
% 0.42/1.08  Clauses:
% 0.42/1.08  [
% 0.42/1.08     [ =( 'double_divide'( 'double_divide'( identity, X ), 'double_divide'( 
% 0.42/1.08    'double_divide'( 'double_divide'( Y, Z ), 'double_divide'( identity, 
% 0.42/1.08    identity ) ), 'double_divide'( X, Z ) ) ), Y ) ],
% 0.42/1.08     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.42/1.08    identity ) ) ],
% 0.42/1.08     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.42/1.08     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.42/1.08     [ ~( =( multiply( identity, a2 ), a2 ) ) ]
% 0.42/1.08  ] .
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  percentage equality = 1.000000, percentage horn = 1.000000
% 0.42/1.08  This is a pure equality problem
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  Options Used:
% 0.42/1.08  
% 0.42/1.08  useres =            1
% 0.42/1.08  useparamod =        1
% 0.42/1.08  useeqrefl =         1
% 0.42/1.08  useeqfact =         1
% 0.42/1.08  usefactor =         1
% 0.42/1.08  usesimpsplitting =  0
% 0.42/1.08  usesimpdemod =      5
% 0.42/1.08  usesimpres =        3
% 0.42/1.08  
% 0.42/1.08  resimpinuse      =  1000
% 0.42/1.08  resimpclauses =     20000
% 0.42/1.08  substype =          eqrewr
% 0.42/1.08  backwardsubs =      1
% 0.42/1.08  selectoldest =      5
% 0.42/1.08  
% 0.42/1.08  litorderings [0] =  split
% 0.42/1.08  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.42/1.08  
% 0.42/1.08  termordering =      kbo
% 0.42/1.08  
% 0.42/1.08  litapriori =        0
% 0.42/1.08  termapriori =       1
% 0.42/1.08  litaposteriori =    0
% 0.42/1.08  termaposteriori =   0
% 0.42/1.08  demodaposteriori =  0
% 0.42/1.08  ordereqreflfact =   0
% 0.42/1.08  
% 0.42/1.08  litselect =         negord
% 0.42/1.08  
% 0.42/1.08  maxweight =         15
% 0.42/1.08  maxdepth =          30000
% 0.42/1.08  maxlength =         115
% 0.42/1.08  maxnrvars =         195
% 0.42/1.08  excuselevel =       1
% 0.42/1.08  increasemaxweight = 1
% 0.42/1.08  
% 0.42/1.08  maxselected =       10000000
% 0.42/1.08  maxnrclauses =      10000000
% 0.42/1.08  
% 0.42/1.08  showgenerated =    0
% 0.42/1.08  showkept =         0
% 0.42/1.08  showselected =     0
% 0.42/1.08  showdeleted =      0
% 0.42/1.08  showresimp =       1
% 0.42/1.08  showstatus =       2000
% 0.42/1.08  
% 0.42/1.08  prologoutput =     1
% 0.42/1.08  nrgoals =          5000000
% 0.42/1.08  totalproof =       1
% 0.42/1.08  
% 0.42/1.08  Symbols occurring in the translation:
% 0.42/1.08  
% 0.42/1.08  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.42/1.08  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.42/1.08  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.42/1.08  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.42/1.08  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.42/1.08  identity  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.72/1.08  'double_divide'  [41, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.72/1.08  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.72/1.08  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.72/1.08  a2  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Starting Search:
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Bliksems!, er is een bewijs:
% 0.72/1.08  % SZS status Unsatisfiable
% 0.72/1.08  % SZS output start Refutation
% 0.72/1.08  
% 0.72/1.08  clause( 0, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), 
% 0.72/1.08    'double_divide'( identity, identity ) ), 'double_divide'( X, Z ) ) ), Y )
% 0.72/1.08     ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 6, [ =( 'double_divide'( 'double_divide'( X, Y ), multiply( Y, X )
% 0.72/1.08     ), identity ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ), Y ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 14, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  .
% 0.72/1.08  clause( 22, [ =( 'double_divide'( 'double_divide'( identity, X ), inverse( 
% 0.72/1.08    identity ) ), X ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 30, [ =( multiply( X, identity ), X ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 36, [ =( 'double_divide'( 'double_divide'( identity, X ), X ), 
% 0.72/1.08    identity ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 38, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 42, [ =( 'double_divide'( identity, 'double_divide'( identity, X )
% 0.72/1.08     ), X ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 46, [ =( 'double_divide'( identity, X ), inverse( X ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 51, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 60, [] )
% 0.72/1.08  .
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  % SZS output end Refutation
% 0.72/1.08  found a proof!
% 0.72/1.08  
% 0.72/1.08  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.08  
% 0.72/1.08  initialclauses(
% 0.72/1.08  [ clause( 62, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), 
% 0.72/1.08    'double_divide'( identity, identity ) ), 'double_divide'( X, Z ) ) ), Y )
% 0.72/1.08     ] )
% 0.72/1.08  , clause( 63, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.72/1.08     ), identity ) ) ] )
% 0.72/1.08  , clause( 64, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.72/1.08  , clause( 65, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 66, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.72/1.08  ] ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 0, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), 
% 0.72/1.08    'double_divide'( identity, identity ) ), 'double_divide'( X, Z ) ) ), Y )
% 0.72/1.08     ] )
% 0.72/1.08  , clause( 62, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), 
% 0.72/1.08    'double_divide'( identity, identity ) ), 'double_divide'( X, Z ) ) ), Y )
% 0.72/1.08     ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.08    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 69, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , clause( 63, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.72/1.08     ), identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , clause( 69, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 72, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 64, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 72, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 76, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , clause( 65, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , clause( 76, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.72/1.08  , clause( 66, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 84, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.72/1.08    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.72/1.08  , clause( 84, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 87, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 90, [ =( identity, 'double_divide'( 'double_divide'( X, Y ), 
% 0.72/1.08    multiply( Y, X ) ) ) ] )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, clause( 87, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.08  , 0, 6, substitution( 0, [ :=( X, Y ), :=( Y, X )] ), substitution( 1, [ 
% 0.72/1.08    :=( X, 'double_divide'( X, Y ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 91, [ =( 'double_divide'( 'double_divide'( X, Y ), multiply( Y, X )
% 0.72/1.08     ), identity ) ] )
% 0.72/1.08  , clause( 90, [ =( identity, 'double_divide'( 'double_divide'( X, Y ), 
% 0.72/1.08    multiply( Y, X ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 6, [ =( 'double_divide'( 'double_divide'( X, Y ), multiply( Y, X )
% 0.72/1.08     ), identity ) ] )
% 0.72/1.08  , clause( 91, [ =( 'double_divide'( 'double_divide'( X, Y ), multiply( Y, X
% 0.72/1.08     ) ), identity ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 93, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 96, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 93, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.08    :=( Y, identity )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 96, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 100, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ), Y ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 0, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), 
% 0.72/1.08    'double_divide'( identity, identity ) ), 'double_divide'( X, Z ) ) ), Y )
% 0.72/1.08     ] )
% 0.72/1.08  , 0, 10, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X
% 0.72/1.08    , X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ), Y ) ] )
% 0.72/1.08  , clause( 100, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ), Y ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.08    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 103, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.72/1.08  , clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 104, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.72/1.08  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , 0, clause( 103, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, a2 )] ), substitution( 1, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 105, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.72/1.08  , clause( 104, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.72/1.08  , clause( 105, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 107, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ) ) ] )
% 0.72/1.08  , clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ), Y ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 110, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( 'double_divide'( identity, inverse( identity ) ), 
% 0.72/1.08    'double_divide'( Y, inverse( X ) ) ) ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 107, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( 'double_divide'( 'double_divide'( Y, Z ), inverse( 
% 0.72/1.08    identity ) ), 'double_divide'( X, Z ) ) ) ) ] )
% 0.72/1.08  , 0, 8, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, Y ), 
% 0.72/1.08    :=( Y, X ), :=( Z, inverse( X ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 113, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 110, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( 'double_divide'( identity, inverse( identity ) ), 
% 0.72/1.08    'double_divide'( Y, inverse( X ) ) ) ) ) ] )
% 0.72/1.08  , 0, 7, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 114, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 113, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 14, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 114, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 116, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( X, inverse( Y ) ) ) ) ) ] )
% 0.72/1.08  , clause( 14, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 119, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, identity ) ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 116, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( X, inverse( Y ) ) ) ) ) ] )
% 0.72/1.08  , 0, 8, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.08    :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 120, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 119, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, identity ) ) ) ] )
% 0.72/1.08  , 0, 6, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 121, [ =( 'double_divide'( 'double_divide'( identity, X ), inverse( 
% 0.72/1.08    identity ) ), X ) ] )
% 0.72/1.08  , clause( 120, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 22, [ =( 'double_divide'( 'double_divide'( identity, X ), inverse( 
% 0.72/1.08    identity ) ), X ) ] )
% 0.72/1.08  , clause( 121, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ), X ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 123, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 22, [ =( 'double_divide'( 'double_divide'( identity, X ), inverse( 
% 0.72/1.08    identity ) ), X ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 125, [ =( inverse( identity ), 'double_divide'( identity, inverse( 
% 0.72/1.08    identity ) ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 123, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, 4, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    inverse( identity ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 127, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 125, [ =( inverse( identity ), 'double_divide'( identity, 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , clause( 127, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 130, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 22, [ =( 'double_divide'( 'double_divide'( identity, X ), inverse( 
% 0.72/1.08    identity ) ), X ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 133, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    identity ) ) ] )
% 0.72/1.08  , clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , 0, clause( 130, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, 6, substitution( 0, [] ), substitution( 1, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 134, [ =( X, inverse( 'double_divide'( identity, X ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 133, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    identity ) ) ] )
% 0.72/1.08  , 0, 2, substitution( 0, [ :=( X, 'double_divide'( identity, X ) )] ), 
% 0.72/1.08    substitution( 1, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 135, [ =( X, multiply( X, identity ) ) ] )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, clause( 134, [ =( X, inverse( 'double_divide'( identity, X ) ) ) ] )
% 0.72/1.08  , 0, 2, substitution( 0, [ :=( X, X ), :=( Y, identity )] ), substitution( 
% 0.72/1.08    1, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 136, [ =( multiply( X, identity ), X ) ] )
% 0.72/1.08  , clause( 135, [ =( X, multiply( X, identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 30, [ =( multiply( X, identity ), X ) ] )
% 0.72/1.08  , clause( 136, [ =( multiply( X, identity ), X ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 138, [ =( identity, 'double_divide'( 'double_divide'( X, Y ), 
% 0.72/1.08    multiply( Y, X ) ) ) ] )
% 0.72/1.08  , clause( 6, [ =( 'double_divide'( 'double_divide'( X, Y ), multiply( Y, X
% 0.72/1.08     ) ), identity ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 139, [ =( identity, 'double_divide'( 'double_divide'( identity, X )
% 0.72/1.08    , X ) ) ] )
% 0.72/1.08  , clause( 30, [ =( multiply( X, identity ), X ) ] )
% 0.72/1.08  , 0, clause( 138, [ =( identity, 'double_divide'( 'double_divide'( X, Y ), 
% 0.72/1.08    multiply( Y, X ) ) ) ] )
% 0.72/1.08  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    identity ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 140, [ =( 'double_divide'( 'double_divide'( identity, X ), X ), 
% 0.72/1.08    identity ) ] )
% 0.72/1.08  , clause( 139, [ =( identity, 'double_divide'( 'double_divide'( identity, X
% 0.72/1.08     ), X ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 36, [ =( 'double_divide'( 'double_divide'( identity, X ), X ), 
% 0.72/1.08    identity ) ] )
% 0.72/1.08  , clause( 140, [ =( 'double_divide'( 'double_divide'( identity, X ), X ), 
% 0.72/1.08    identity ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 142, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( X, inverse( Y ) ) ) ) ) ] )
% 0.72/1.08  , clause( 14, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 145, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.72/1.08    'double_divide'( identity, inverse( X ) ) ), 'double_divide'( identity, 
% 0.72/1.08    identity ) ) ) ] )
% 0.72/1.08  , clause( 36, [ =( 'double_divide'( 'double_divide'( identity, X ), X ), 
% 0.72/1.08    identity ) ] )
% 0.72/1.08  , 0, clause( 142, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( X, inverse( Y ) ) ) ) ) ] )
% 0.72/1.08  , 0, 11, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.72/1.08    :=( X, 'double_divide'( identity, inverse( X ) ) ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 146, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.72/1.08    'double_divide'( identity, inverse( X ) ) ), inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 145, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.72/1.08    'double_divide'( identity, inverse( X ) ) ), 'double_divide'( identity, 
% 0.72/1.08    identity ) ) ) ] )
% 0.72/1.08  , 0, 9, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 147, [ =( X, 'double_divide'( identity, inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 22, [ =( 'double_divide'( 'double_divide'( identity, X ), inverse( 
% 0.72/1.08    identity ) ), X ) ] )
% 0.72/1.08  , 0, clause( 146, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.72/1.08    'double_divide'( identity, inverse( X ) ) ), inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, 2, substitution( 0, [ :=( X, 'double_divide'( identity, inverse( X ) )
% 0.72/1.08     )] ), substitution( 1, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 148, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  , clause( 147, [ =( X, 'double_divide'( identity, inverse( X ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 38, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  , clause( 148, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 150, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( X, inverse( Y ) ) ) ) ) ] )
% 0.72/1.08  , clause( 14, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( Y, inverse( X ) ) ) ), X ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 154, [ =( X, 'double_divide'( 'double_divide'( identity, identity )
% 0.72/1.08    , 'double_divide'( identity, X ) ) ) ] )
% 0.72/1.08  , clause( 38, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  , 0, clause( 150, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( X, inverse( Y ) ) ) ) ) ] )
% 0.72/1.08  , 0, 8, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    identity ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 155, [ =( X, 'double_divide'( inverse( identity ), 'double_divide'( 
% 0.72/1.08    identity, X ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 154, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.72/1.08    identity ), 'double_divide'( identity, X ) ) ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 156, [ =( X, 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.08    X ) ) ) ] )
% 0.72/1.08  , clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , 0, clause( 155, [ =( X, 'double_divide'( inverse( identity ), 
% 0.72/1.08    'double_divide'( identity, X ) ) ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [] ), substitution( 1, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 157, [ =( 'double_divide'( identity, 'double_divide'( identity, X )
% 0.72/1.08     ), X ) ] )
% 0.72/1.08  , clause( 156, [ =( X, 'double_divide'( identity, 'double_divide'( identity
% 0.72/1.08    , X ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 42, [ =( 'double_divide'( identity, 'double_divide'( identity, X )
% 0.72/1.08     ), X ) ] )
% 0.72/1.08  , clause( 157, [ =( 'double_divide'( identity, 'double_divide'( identity, X
% 0.72/1.08     ) ), X ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 159, [ =( X, 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.08    X ) ) ) ] )
% 0.72/1.08  , clause( 42, [ =( 'double_divide'( identity, 'double_divide'( identity, X
% 0.72/1.08     ) ), X ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 160, [ =( inverse( X ), 'double_divide'( identity, X ) ) ] )
% 0.72/1.08  , clause( 38, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  , 0, clause( 159, [ =( X, 'double_divide'( identity, 'double_divide'( 
% 0.72/1.08    identity, X ) ) ) ] )
% 0.72/1.08  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, inverse( 
% 0.72/1.08    X ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 161, [ =( 'double_divide'( identity, X ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 160, [ =( inverse( X ), 'double_divide'( identity, X ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 46, [ =( 'double_divide'( identity, X ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 161, [ =( 'double_divide'( identity, X ), inverse( X ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 162, [ =( inverse( X ), 'double_divide'( identity, X ) ) ] )
% 0.72/1.08  , clause( 46, [ =( 'double_divide'( identity, X ), inverse( X ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 164, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.08  , clause( 38, [ =( 'double_divide'( identity, inverse( X ) ), X ) ] )
% 0.72/1.08  , 0, clause( 162, [ =( inverse( X ), 'double_divide'( identity, X ) ) ] )
% 0.72/1.08  , 0, 4, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, inverse( 
% 0.72/1.08    X ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 51, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.08  , clause( 164, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 166, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 51, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 167, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.72/1.08  , clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  resolution(
% 0.72/1.08  clause( 168, [] )
% 0.72/1.08  , clause( 167, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.72/1.08  , 0, clause( 166, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [] ), substitution( 1, [ :=( X, a2 )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 60, [] )
% 0.72/1.08  , clause( 168, [] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  end.
% 0.72/1.08  
% 0.72/1.08  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.08  
% 0.72/1.08  Memory use:
% 0.72/1.08  
% 0.72/1.08  space for terms:        722
% 0.72/1.08  space for clauses:      6879
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  clauses generated:      200
% 0.72/1.08  clauses kept:           61
% 0.72/1.08  clauses selected:       21
% 0.72/1.08  clauses deleted:        3
% 0.72/1.08  clauses inuse deleted:  0
% 0.72/1.08  
% 0.72/1.08  subsentry:          264
% 0.72/1.08  literals s-matched: 100
% 0.72/1.08  literals matched:   100
% 0.72/1.08  full subsumption:   0
% 0.72/1.08  
% 0.72/1.08  checksum:           -1848580593
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Bliksem ended
%------------------------------------------------------------------------------