TSTP Solution File: GRP492-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP492-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:06 EDT 2022

% Result   : Unsatisfiable 1.70s 1.90s
% Output   : Refutation 1.70s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   22
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   54 (  54 unt;   0 nHn;   8 RR)
%            Number of literals    :   54 (  53 equ;   4 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   83 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP492-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP492-1.p',unknown),
    [] ).

cnf(4,axiom,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B)))) = C,
    file('GRP492-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP492-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP492-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP492-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6,6,6,6])]),
    [iquote('back_demod,1,demod,6,6,6,6,flip.1')] ).

cnf(15,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(identity,identity),double_divide(B,double_divide(A,identity))))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,11]),
    [iquote('para_into,3.1.1.2.2.1.1,10.1.1')] ).

cnf(17,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),double_divide(identity,double_divide(double_divide(B,identity),double_divide(C,double_divide(identity,double_divide(double_divide(double_divide(A,D),identity),double_divide(B,D))))))) = C,
    inference(para_into,[status(thm),theory(equality)],[4,4]),
    [iquote('para_into,3.1.1.2.2.1.1,3.1.1')] ).

cnf(19,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(B,identity)),identity),identity))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,11]),
    [iquote('para_into,3.1.1.2.2.2,10.1.1')] ).

cnf(23,plain,
    double_divide(double_divide(identity,A),double_divide(identity,identity)) = double_divide(double_divide(A,identity),identity),
    inference(para_into,[status(thm),theory(equality)],[4,11]),
    [iquote('para_into,3.1.1.2.2,10.1.1')] ).

cnf(24,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(identity,A),double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[23])]),
    [iquote('copy,23,flip.1')] ).

cnf(25,plain,
    double_divide(double_divide(double_divide(identity,identity),identity),identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[23,11]),11])]),
    [iquote('para_into,23.1.1.1,10.1.1,demod,11,flip.1')] ).

cnf(27,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(identity,identity)),identity),double_divide(double_divide(B,identity),identity)))) = double_divide(identity,B),
    inference(para_from,[status(thm),theory(equality)],[23,4]),
    [iquote('para_from,23.1.1,3.1.1.2.2.2')] ).

cnf(33,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(A,identity)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[25,4]),11]),
    [iquote('para_from,25.1.1,3.1.1.2.2.1,demod,11')] ).

cnf(38,plain,
    double_divide(double_divide(identity,identity),identity) = double_divide(identity,identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[33,25]),11])]),
    [iquote('para_into,33.1.1.2.2.2,25.1.1,demod,11,flip.1')] ).

cnf(44,plain,
    double_divide(identity,identity) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[25]),38,38]),
    [iquote('back_demod,25,demod,38,38')] ).

cnf(49,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[27]),44,4]),
    [iquote('back_demod,27,demod,44,4')] ).

cnf(50,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(identity,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[24]),44]),
    [iquote('back_demod,24,demod,44')] ).

cnf(52,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(identity,double_divide(B,double_divide(A,identity))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[15]),44]),
    [iquote('back_demod,15,demod,44')] ).

cnf(56,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[49])]),
    [iquote('copy,49,flip.1')] ).

cnf(59,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,double_divide(identity,double_divide(A,identity))))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[33,4]),44]),
    [iquote('para_from,33.1.1,3.1.1.2.2.1.1,demod,44')] ).

cnf(79,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),double_divide(identity,double_divide(identity,double_divide(B,double_divide(identity,double_divide(double_divide(double_divide(A,identity),identity),identity)))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,44]),44]),
    [iquote('para_into,17.1.1.2.2.2.2.2.2,43.1.1,demod,44')] ).

cnf(85,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),double_divide(identity,double_divide(double_divide(B,identity),double_divide(C,double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(B,identity)),identity),identity)))))) = C,
    inference(para_into,[status(thm),theory(equality)],[17,11]),
    [iquote('para_into,17.1.1.2.2.2.2.2.2,10.1.1')] ).

cnf(105,plain,
    double_divide(A,double_divide(identity,A)) = identity,
    inference(para_from,[status(thm),theory(equality)],[49,11]),
    [iquote('para_from,49.1.1,10.1.1.2')] ).

cnf(109,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(identity,double_divide(A,B)),double_divide(C,B)))) = C,
    inference(para_from,[status(thm),theory(equality)],[49,4]),
    [iquote('para_from,49.1.1,3.1.1.2.2.1')] ).

cnf(120,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),identity))) = A,
    inference(para_from,[status(thm),theory(equality)],[56,33]),
    [iquote('para_from,56.1.1,33.1.1.2.2')] ).

cnf(143,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),A) = identity,
    inference(para_into,[status(thm),theory(equality)],[105,33]),
    [iquote('para_into,105.1.1.2,33.1.1')] ).

cnf(158,plain,
    double_divide(double_divide(identity,A),identity) = double_divide(identity,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[50,49])]),
    [iquote('para_into,50.1.1,49.1.1,flip.1')] ).

cnf(168,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,105]),44,158,158,120]),
    [iquote('para_into,19.1.1.1,105.1.1,demod,44,158,158,120')] ).

cnf(178,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,56]),44,168,168]),
    [iquote('para_into,19.1.1.2.2.1.1,56.1.1,demod,44,168,168')] ).

cnf(199,plain,
    double_divide(double_divide(identity,A),A) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[143]),168]),
    [iquote('back_demod,143,demod,168')] ).

cnf(204,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[120]),178]),
    [iquote('back_demod,119,demod,178')] ).

cnf(205,plain,
    double_divide(A,double_divide(identity,double_divide(double_divide(B,identity),double_divide(C,double_divide(identity,double_divide(A,double_divide(B,identity))))))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[85]),204,178]),
    [iquote('back_demod,85,demod,204,178')] ).

cnf(210,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[79]),204,178,168,204]),
    [iquote('back_demod,79,demod,204,178,168,204')] ).

cnf(217,plain,
    double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[59]),210,204]),
    [iquote('back_demod,59,demod,210,204')] ).

cnf(254,plain,
    double_divide(double_divide(identity,A),double_divide(B,double_divide(A,identity))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[52]),204]),
    [iquote('back_demod,52,demod,204')] ).

cnf(261,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[210,210]),
    [iquote('para_into,209.1.1.2,209.1.1')] ).

cnf(262,plain,
    double_divide(double_divide(A,identity),B) = double_divide(double_divide(identity,A),B),
    inference(para_into,[status(thm),theory(equality)],[217,261]),
    [iquote('para_into,217.1.1.2,260.1.1')] ).

cnf(263,plain,
    double_divide(double_divide(identity,A),B) = double_divide(double_divide(A,identity),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[262])]),
    [iquote('copy,262,flip.1')] ).

cnf(268,plain,
    double_divide(double_divide(double_divide(A,identity),B),double_divide(identity,A)) = B,
    inference(para_from,[status(thm),theory(equality)],[263,261]),
    [iquote('para_from,263.1.1,260.1.1.1')] ).

cnf(298,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(A,B))) = double_divide(identity,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[109,199]),261]),
    [iquote('para_into,109.1.1.2.2.2,199.1.1,demod,261')] ).

cnf(364,plain,
    double_divide(double_divide(double_divide(A,double_divide(B,identity)),identity),C) = double_divide(A,double_divide(identity,double_divide(double_divide(B,identity),C))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[205,268])]),
    [iquote('para_into,205.1.1.2.2.2,268.1.1,flip.1')] ).

cnf(376,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(identity,double_divide(B,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[298,254]),204]),
    [iquote('para_into,298.1.1.2.2,254.1.1,demod,204')] ).

cnf(378,plain,
    double_divide(double_divide(identity,A),double_divide(identity,B)) = double_divide(identity,double_divide(B,A)),
    inference(para_into,[status(thm),theory(equality)],[298,210]),
    [iquote('para_into,298.1.1.2.2,209.1.1')] ).

cnf(379,plain,
    double_divide(identity,double_divide(A,double_divide(B,identity))) = double_divide(B,double_divide(identity,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[376])]),
    [iquote('copy,376,flip.1')] ).

cnf(381,plain,
    double_divide(identity,double_divide(A,B)) = double_divide(double_divide(identity,B),double_divide(identity,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[378])]),
    [iquote('copy,378,flip.1')] ).

cnf(510,plain,
    double_divide(double_divide(A,double_divide(B,identity)),identity) = double_divide(B,double_divide(identity,A)),
    inference(para_into,[status(thm),theory(equality)],[379,56]),
    [iquote('para_into,379.1.1,56.1.1')] ).

cnf(513,plain,
    double_divide(double_divide(A,double_divide(identity,B)),C) = double_divide(B,double_divide(identity,double_divide(double_divide(A,identity),C))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[364]),510]),
    [iquote('back_demod,364,demod,510')] ).

cnf(516,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(b3,a3),double_divide(identity,c3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),510]),
    [iquote('back_demod,12,demod,510')] ).

cnf(584,plain,
    double_divide(double_divide(double_divide(A,B),identity),C) = double_divide(A,double_divide(identity,double_divide(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[381,263]),513,261])]),
    [iquote('para_from,381.1.1,263.1.1.1,demod,513,261,flip.1')] ).

cnf(595,plain,
    double_divide(double_divide(b3,a3),double_divide(identity,c3)) != double_divide(double_divide(b3,a3),double_divide(identity,c3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[516]),584,513,178]),
    [iquote('back_demod,516,demod,584,513,178')] ).

cnf(596,plain,
    $false,
    inference(binary,[status(thm)],[595,2]),
    [iquote('binary,595.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP492-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n018.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:25:16 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.70/1.90  ----- Otter 3.3f, August 2004 -----
% 1.70/1.90  The process was started by sandbox on n018.cluster.edu,
% 1.70/1.90  Wed Jul 27 05:25:16 2022
% 1.70/1.90  The command was "./otter".  The process ID is 14897.
% 1.70/1.90  
% 1.70/1.90  set(prolog_style_variables).
% 1.70/1.90  set(auto).
% 1.70/1.90     dependent: set(auto1).
% 1.70/1.90     dependent: set(process_input).
% 1.70/1.90     dependent: clear(print_kept).
% 1.70/1.90     dependent: clear(print_new_demod).
% 1.70/1.90     dependent: clear(print_back_demod).
% 1.70/1.90     dependent: clear(print_back_sub).
% 1.70/1.90     dependent: set(control_memory).
% 1.70/1.90     dependent: assign(max_mem, 12000).
% 1.70/1.90     dependent: assign(pick_given_ratio, 4).
% 1.70/1.90     dependent: assign(stats_level, 1).
% 1.70/1.90     dependent: assign(max_seconds, 10800).
% 1.70/1.90  clear(print_given).
% 1.70/1.90  
% 1.70/1.90  list(usable).
% 1.70/1.90  0 [] A=A.
% 1.70/1.90  0 [] double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B))))=C.
% 1.70/1.90  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.70/1.90  0 [] inverse(A)=double_divide(A,identity).
% 1.70/1.90  0 [] identity=double_divide(A,inverse(A)).
% 1.70/1.90  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.70/1.90  end_of_list.
% 1.70/1.90  
% 1.70/1.90  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.70/1.90  
% 1.70/1.90  All clauses are units, and equality is present; the
% 1.70/1.90  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.70/1.90  
% 1.70/1.90     dependent: set(knuth_bendix).
% 1.70/1.90     dependent: set(anl_eq).
% 1.70/1.90     dependent: set(para_from).
% 1.70/1.90     dependent: set(para_into).
% 1.70/1.90     dependent: clear(para_from_right).
% 1.70/1.90     dependent: clear(para_into_right).
% 1.70/1.90     dependent: set(para_from_vars).
% 1.70/1.90     dependent: set(eq_units_both_ways).
% 1.70/1.90     dependent: set(dynamic_demod_all).
% 1.70/1.90     dependent: set(dynamic_demod).
% 1.70/1.90     dependent: set(order_eq).
% 1.70/1.90     dependent: set(back_demod).
% 1.70/1.90     dependent: set(lrpo).
% 1.70/1.90  
% 1.70/1.90  ------------> process usable:
% 1.70/1.90  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.70/1.90  
% 1.70/1.90  ------------> process sos:
% 1.70/1.90  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.70/1.90  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B))))=C.
% 1.70/1.90  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B))))=C.
% 1.70/1.90  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.70/1.90  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.70/1.90  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.70/1.90  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.70/1.90  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.70/1.90  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.70/1.90    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.70/1.90  >>>> Starting back demodulation with 4.
% 1.70/1.90  >>>> Starting back demodulation with 6.
% 1.70/1.90      >> back demodulating 1 with 6.
% 1.70/1.90  >>>> Starting back demodulation with 8.
% 1.70/1.90  >>>> Starting back demodulation with 11.
% 1.70/1.90  
% 1.70/1.90  ======= end of input processing =======
% 1.70/1.90  
% 1.70/1.90  =========== start of search ===========
% 1.70/1.90  
% 1.70/1.90  -------- PROOF -------- 
% 1.70/1.90  
% 1.70/1.90  ----> UNIT CONFLICT at   0.03 sec ----> 596 [binary,595.1,2.1] $F.
% 1.70/1.90  
% 1.70/1.90  Length of proof is 47.  Level of proof is 21.
% 1.70/1.90  
% 1.70/1.90  ---------------- PROOF ----------------
% 1.70/1.90  % SZS status Unsatisfiable
% 1.70/1.90  % SZS output start Refutation
% See solution above
% 1.70/1.90  ------------ end of proof -------------
% 1.70/1.90  
% 1.70/1.90  
% 1.70/1.90  Search stopped by max_proofs option.
% 1.70/1.90  
% 1.70/1.90  
% 1.70/1.90  Search stopped by max_proofs option.
% 1.70/1.90  
% 1.70/1.90  ============ end of search ============
% 1.70/1.90  
% 1.70/1.90  -------------- statistics -------------
% 1.70/1.90  clauses given                 60
% 1.70/1.90  clauses generated           2251
% 1.70/1.90  clauses kept                 354
% 1.70/1.90  clauses forward subsumed    2173
% 1.70/1.90  clauses back subsumed          1
% 1.70/1.90  Kbytes malloced             2929
% 1.70/1.90  
% 1.70/1.90  ----------- times (seconds) -----------
% 1.70/1.90  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 1.70/1.90  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.70/1.90  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.70/1.90  
% 1.70/1.90  That finishes the proof of the theorem.
% 1.70/1.90  
% 1.70/1.90  Process 14897 finished Wed Jul 27 05:25:17 2022
% 1.70/1.90  Otter interrupted
% 1.70/1.90  PROOF FOUND
%------------------------------------------------------------------------------