TSTP Solution File: GRP492-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP492-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:20:32 EDT 2023

% Result   : Unsatisfiable 0.57s 0.65s
% Output   : CNFRefutation 0.57s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   23
%            Number of leaves      :   12
% Syntax   : Number of formulae    :   51 (  44 unt;   7 typ;   0 def)
%            Number of atoms       :   44 (  43 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    6 (   6   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   67 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    identity: $i ).

tff(decl_23,type,
    double_divide: ( $i * $i ) > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    inverse: $i > $i ).

tff(decl_26,type,
    a3: $i ).

tff(decl_27,type,
    b3: $i ).

tff(decl_28,type,
    c3: $i ).

cnf(identity,axiom,
    identity = double_divide(X1,inverse(X1)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',identity) ).

cnf(inverse,axiom,
    inverse(X1) = double_divide(X1,identity),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inverse) ).

cnf(single_axiom,axiom,
    double_divide(double_divide(identity,X1),double_divide(identity,double_divide(double_divide(double_divide(X1,X2),identity),double_divide(X3,X2)))) = X3,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_3,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms_3) ).

cnf(multiply,axiom,
    multiply(X1,X2) = double_divide(double_divide(X2,X1),identity),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_0_5,axiom,
    identity = double_divide(X1,inverse(X1)),
    identity ).

cnf(c_0_6,axiom,
    inverse(X1) = double_divide(X1,identity),
    inverse ).

cnf(c_0_7,axiom,
    double_divide(double_divide(identity,X1),double_divide(identity,double_divide(double_divide(double_divide(X1,X2),identity),double_divide(X3,X2)))) = X3,
    single_axiom ).

cnf(c_0_8,plain,
    identity = double_divide(X1,double_divide(X1,identity)),
    inference(rw,[status(thm)],[c_0_5,c_0_6]) ).

cnf(c_0_9,plain,
    double_divide(double_divide(identity,X1),double_divide(identity,identity)) = double_divide(double_divide(X1,identity),identity),
    inference(spm,[status(thm)],[c_0_7,c_0_8]) ).

cnf(c_0_10,plain,
    double_divide(double_divide(double_divide(identity,identity),identity),identity) = identity,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_9,c_0_8]),c_0_8]) ).

cnf(c_0_11,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(X1,identity)))) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_10]),c_0_8]) ).

cnf(c_0_12,plain,
    double_divide(double_divide(identity,identity),identity) = double_divide(identity,identity),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_11,c_0_10]),c_0_8]) ).

cnf(c_0_13,plain,
    double_divide(identity,identity) = identity,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_10,c_0_12]),c_0_12]) ).

cnf(c_0_14,plain,
    double_divide(double_divide(identity,X1),identity) = double_divide(double_divide(X1,identity),identity),
    inference(rw,[status(thm)],[c_0_9,c_0_13]) ).

cnf(c_0_15,plain,
    double_divide(identity,X1) = double_divide(X1,identity),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_14]),c_0_7]) ).

cnf(c_0_16,plain,
    double_divide(X1,double_divide(identity,X1)) = identity,
    inference(spm,[status(thm)],[c_0_8,c_0_15]) ).

cnf(c_0_17,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(X1,identity))),X1) = identity,
    inference(spm,[status(thm)],[c_0_16,c_0_11]) ).

cnf(c_0_18,plain,
    double_divide(X1,double_divide(identity,double_divide(identity,double_divide(X2,X1)))) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_17]),c_0_11]),c_0_13]) ).

cnf(c_0_19,plain,
    double_divide(identity,double_divide(identity,X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_18,c_0_16]),c_0_8]),c_0_15]) ).

cnf(c_0_20,plain,
    double_divide(X1,double_divide(X2,X1)) = X2,
    inference(rw,[status(thm)],[c_0_18,c_0_19]) ).

cnf(c_0_21,plain,
    double_divide(double_divide(identity,X1),double_divide(identity,double_divide(double_divide(identity,double_divide(X1,double_divide(identity,double_divide(double_divide(identity,double_divide(X2,X3)),double_divide(X4,X3))))),X4))) = double_divide(identity,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_7]),c_0_15]),c_0_15]) ).

cnf(c_0_22,plain,
    double_divide(double_divide(X1,X2),X1) = X2,
    inference(spm,[status(thm)],[c_0_20,c_0_20]) ).

cnf(c_0_23,plain,
    double_divide(double_divide(identity,X1),double_divide(identity,double_divide(X1,X2))) = double_divide(identity,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_13]),c_0_20]),c_0_20]),c_0_22]) ).

cnf(c_0_24,plain,
    double_divide(double_divide(identity,double_divide(identity,X1)),double_divide(identity,double_divide(double_divide(X2,identity),double_divide(X3,double_divide(identity,double_divide(double_divide(double_divide(X1,X4),identity),double_divide(X2,X4))))))) = X3,
    inference(spm,[status(thm)],[c_0_7,c_0_7]) ).

cnf(c_0_25,plain,
    double_divide(double_divide(identity,X1),double_divide(identity,X2)) = double_divide(identity,double_divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_22,c_0_23]) ).

cnf(c_0_26,plain,
    double_divide(X1,double_divide(identity,double_divide(double_divide(X2,identity),double_divide(X3,double_divide(identity,double_divide(double_divide(identity,double_divide(X1,X4)),double_divide(X2,X4))))))) = X3,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_24,c_0_19]),c_0_15]) ).

cnf(c_0_27,plain,
    double_divide(double_divide(X1,identity),double_divide(X2,double_divide(identity,X1))) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_19]),c_0_13]),c_0_19]) ).

cnf(c_0_28,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    prove_these_axioms_3 ).

cnf(c_0_29,axiom,
    multiply(X1,X2) = double_divide(double_divide(X2,X1),identity),
    multiply ).

cnf(c_0_30,plain,
    double_divide(identity,double_divide(double_divide(X1,identity),X2)) = double_divide(double_divide(identity,X2),X1),
    inference(spm,[status(thm)],[c_0_25,c_0_20]) ).

cnf(c_0_31,plain,
    double_divide(identity,double_divide(double_divide(identity,X1),X2)) = double_divide(double_divide(identity,X2),X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_25,c_0_26]),c_0_19]),c_0_20]),c_0_27]) ).

cnf(c_0_32,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(identity,X1)))) = X1,
    inference(spm,[status(thm)],[c_0_11,c_0_15]) ).

cnf(c_0_33,negated_conjecture,
    double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) != double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_28,c_0_29]),c_0_29]),c_0_29]),c_0_29]) ).

cnf(c_0_34,plain,
    double_divide(X1,double_divide(double_divide(identity,double_divide(X2,double_divide(double_divide(identity,double_divide(X3,X4)),double_divide(X1,X4)))),X3)) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_26,c_0_30]),c_0_31]) ).

cnf(c_0_35,plain,
    double_divide(double_divide(identity,X1),X1) = identity,
    inference(spm,[status(thm)],[c_0_18,c_0_32]) ).

cnf(c_0_36,negated_conjecture,
    double_divide(identity,double_divide(double_divide(identity,double_divide(c3,b3)),a3)) != double_divide(identity,double_divide(c3,double_divide(identity,double_divide(b3,a3)))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_33,c_0_15]),c_0_15]),c_0_15]),c_0_15]) ).

cnf(c_0_37,plain,
    double_divide(double_divide(identity,double_divide(X1,X2)),double_divide(X3,X2)) = double_divide(X1,double_divide(identity,X3)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_35]),c_0_13]),c_0_31]) ).

cnf(c_0_38,negated_conjecture,
    double_divide(identity,double_divide(c3,double_divide(identity,double_divide(b3,a3)))) != double_divide(double_divide(identity,a3),double_divide(c3,b3)),
    inference(rw,[status(thm)],[c_0_36,c_0_31]) ).

cnf(c_0_39,plain,
    double_divide(identity,double_divide(X1,double_divide(identity,X2))) = double_divide(X2,double_divide(identity,X1)),
    inference(spm,[status(thm)],[c_0_25,c_0_19]) ).

cnf(c_0_40,plain,
    double_divide(double_divide(identity,double_divide(X1,X2)),X3) = double_divide(X1,double_divide(identity,double_divide(X2,X3))),
    inference(spm,[status(thm)],[c_0_37,c_0_22]) ).

cnf(c_0_41,negated_conjecture,
    double_divide(double_divide(b3,a3),double_divide(identity,c3)) != double_divide(double_divide(identity,a3),double_divide(c3,b3)),
    inference(rw,[status(thm)],[c_0_38,c_0_39]) ).

cnf(c_0_42,plain,
    double_divide(double_divide(X1,X2),double_divide(identity,X3)) = double_divide(double_divide(identity,X2),double_divide(X3,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_31,c_0_40]),c_0_39]) ).

cnf(c_0_43,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem    : GRP492-1 : TPTP v8.1.2. Released v2.6.0.
% 0.06/0.12  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.12/0.33  % Computer : n029.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % WCLimit    : 300
% 0.12/0.33  % DateTime   : Tue Aug 29 00:55:26 EDT 2023
% 0.12/0.33  % CPUTime  : 
% 0.42/0.59  start to proof: theBenchmark
% 0.57/0.65  % Version  : CSE_E---1.5
% 0.57/0.65  % Problem  : theBenchmark.p
% 0.57/0.65  % Proof found
% 0.57/0.65  % SZS status Theorem for theBenchmark.p
% 0.57/0.65  % SZS output start Proof
% See solution above
% 0.57/0.65  % Total time : 0.049000 s
% 0.57/0.65  % SZS output end Proof
% 0.57/0.65  % Total time : 0.051000 s
%------------------------------------------------------------------------------