TSTP Solution File: GRP487-1 by SnakeForV---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SnakeForV---1.0
% Problem  : GRP487-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule snake_tptp_uns --cores 0 -t %d %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 31 16:16:00 EDT 2022

% Result   : Unsatisfiable 1.31s 0.55s
% Output   : Refutation 1.31s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :    5
% Syntax   : Number of formulae    :   19 (  19 unt;   0 def)
%            Number of atoms       :   19 (  18 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    3 (   3   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    4 (   2 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   15 (  15   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(f36,plain,
    $false,
    inference(subsumption_resolution,[],[f8,f35]) ).

fof(f35,plain,
    identity = double_divide(identity,identity),
    inference(forward_demodulation,[],[f29,f34]) ).

fof(f34,plain,
    ! [X2] : double_divide(X2,identity) = double_divide(identity,double_divide(double_divide(double_divide(identity,identity),X2),identity)),
    inference(forward_demodulation,[],[f32,f7]) ).

fof(f7,plain,
    ! [X0] : identity = double_divide(X0,double_divide(X0,identity)),
    inference(definition_unfolding,[],[f4,f3]) ).

fof(f3,axiom,
    ! [X0] : double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

fof(f4,axiom,
    ! [X0] : identity = double_divide(X0,inverse(X0)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',identity) ).

fof(f32,plain,
    ! [X2] : double_divide(X2,identity) = double_divide(double_divide(identity,double_divide(identity,identity)),double_divide(double_divide(double_divide(identity,identity),X2),identity)),
    inference(backward_demodulation,[],[f22,f31]) ).

fof(f31,plain,
    double_divide(double_divide(identity,identity),identity) = double_divide(identity,identity),
    inference(forward_demodulation,[],[f30,f9]) ).

fof(f9,plain,
    ! [X0,X1] : double_divide(X0,identity) = double_divide(X1,double_divide(double_divide(double_divide(identity,double_divide(double_divide(X1,identity),identity)),X0),identity)),
    inference(superposition,[],[f1,f7]) ).

fof(f1,axiom,
    ! [X2,X0,X1] : double_divide(X0,double_divide(double_divide(double_divide(identity,double_divide(double_divide(X0,identity),double_divide(X1,X2))),X1),identity)) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

fof(f30,plain,
    ! [X0] : double_divide(identity,identity) = double_divide(X0,double_divide(double_divide(double_divide(identity,double_divide(double_divide(X0,identity),identity)),double_divide(identity,identity)),identity)),
    inference(superposition,[],[f1,f13]) ).

fof(f13,plain,
    identity = double_divide(double_divide(identity,identity),double_divide(identity,identity)),
    inference(superposition,[],[f11,f7]) ).

fof(f11,plain,
    ! [X0] : identity = double_divide(X0,double_divide(double_divide(double_divide(identity,identity),double_divide(X0,identity)),identity)),
    inference(superposition,[],[f1,f7]) ).

fof(f22,plain,
    ! [X2] : double_divide(X2,identity) = double_divide(double_divide(identity,double_divide(double_divide(identity,identity),identity)),double_divide(double_divide(double_divide(identity,identity),X2),identity)),
    inference(superposition,[],[f9,f9]) ).

fof(f29,plain,
    identity = double_divide(identity,double_divide(double_divide(double_divide(identity,identity),identity),identity)),
    inference(superposition,[],[f1,f13]) ).

fof(f8,plain,
    identity != double_divide(identity,identity),
    inference(backward_demodulation,[],[f6,f7]) ).

fof(f6,plain,
    identity != double_divide(double_divide(a1,double_divide(a1,identity)),identity),
    inference(definition_unfolding,[],[f5,f2,f3]) ).

fof(f2,axiom,
    ! [X0,X1] : multiply(X0,X1) = double_divide(double_divide(X1,X0),identity),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

fof(f5,axiom,
    identity != multiply(inverse(a1),a1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_1) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem    : GRP487-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.13  % Command    : vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule snake_tptp_uns --cores 0 -t %d %s
% 0.13/0.34  % Computer : n008.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Mon Aug 29 22:35:25 EDT 2022
% 0.13/0.34  % CPUTime    : 
% 0.19/0.52  % (20133)dis+10_1:7_drc=off:fd=preordered:plsq=on:sp=reverse_frequency:to=lpo:i=212:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/212Mi)
% 0.19/0.52  % (20140)lrs+10_5:1_br=off:ep=RSTC:sos=all:urr=on:i=267:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/267Mi)
% 0.19/0.53  % (20141)dis+21_1:8_aac=none:bs=unit_only:er=filter:fd=off:nwc=5.0:s2pl=no:i=111:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/111Mi)
% 0.19/0.53  % (20125)lrs+1_3:1_ep=RSTC:sos=on:urr=on:i=33:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/33Mi)
% 0.19/0.53  % (20124)lrs+10_1:1_avsq=on:avsql=on:bsr=unit_only:drc=off:fsr=off:inw=on:nwc=10.0:rnwc=on:sgt=16:slsq=on:slsqc=0:slsql=off:slsqr=211,119:sp=reverse_frequency:spb=goal_then_units:ss=included:st=2.0:to=lpo:i=7:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/7Mi)
% 0.19/0.54  % (20132)lrs+10_1:128_plsq=on:plsqc=2:s2a=on:ss=axioms:st=1.5:urr=on:i=321:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/321Mi)
% 0.19/0.54  % (20124)First to succeed.
% 1.31/0.55  % (20147)lrs+10_1:1_drc=off:fd=preordered:plsq=on:sp=occurrence:to=lpo:i=48:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/48Mi)
% 1.31/0.55  % (20118)dis+1002_1:12_drc=off:fd=preordered:tgt=full:i=99788:si=on:rawr=on:rtra=on_0 on theBenchmark for (2999ds/99788Mi)
% 1.31/0.55  % (20124)Refutation found. Thanks to Tanya!
% 1.31/0.55  % SZS status Unsatisfiable for theBenchmark
% 1.31/0.55  % SZS output start Proof for theBenchmark
% See solution above
% 1.31/0.55  % (20124)------------------------------
% 1.31/0.55  % (20124)Version: Vampire 4.7 (commit 807e37dd9 on 2022-08-23 09:55:27 +0200)
% 1.31/0.55  % (20124)Linked with Z3 4.8.13.0 f03d756e086f81f2596157241e0decfb1c982299 z3-4.8.4-5390-gf03d756e0
% 1.31/0.55  % (20124)Termination reason: Refutation
% 1.31/0.55  
% 1.31/0.55  % (20124)Memory used [KB]: 5500
% 1.31/0.55  % (20124)Time elapsed: 0.122 s
% 1.31/0.55  % (20124)Instructions burned: 5 (million)
% 1.31/0.55  % (20124)------------------------------
% 1.31/0.55  % (20124)------------------------------
% 1.31/0.55  % (20117)Success in time 0.201 s
%------------------------------------------------------------------------------