TSTP Solution File: GRP487-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP487-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:16 EDT 2022

% Result   : Unsatisfiable 0.72s 1.08s
% Output   : Refutation 0.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP487-1 : TPTP v8.1.0. Released v2.6.0.
% 0.11/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n006.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Tue Jun 14 02:06:56 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.72/1.08  *** allocated 10000 integers for termspace/termends
% 0.72/1.08  *** allocated 10000 integers for clauses
% 0.72/1.08  *** allocated 10000 integers for justifications
% 0.72/1.08  Bliksem 1.12
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Automatic Strategy Selection
% 0.72/1.08  
% 0.72/1.08  Clauses:
% 0.72/1.08  [
% 0.72/1.08     [ =( 'double_divide'( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ), identity ) ), Z ) ],
% 0.72/1.08     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.72/1.08    identity ) ) ],
% 0.72/1.08     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.72/1.08     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.72/1.08     [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ]
% 0.72/1.08  ] .
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  percentage equality = 1.000000, percentage horn = 1.000000
% 0.72/1.08  This is a pure equality problem
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Options Used:
% 0.72/1.08  
% 0.72/1.08  useres =            1
% 0.72/1.08  useparamod =        1
% 0.72/1.08  useeqrefl =         1
% 0.72/1.08  useeqfact =         1
% 0.72/1.08  usefactor =         1
% 0.72/1.08  usesimpsplitting =  0
% 0.72/1.08  usesimpdemod =      5
% 0.72/1.08  usesimpres =        3
% 0.72/1.08  
% 0.72/1.08  resimpinuse      =  1000
% 0.72/1.08  resimpclauses =     20000
% 0.72/1.08  substype =          eqrewr
% 0.72/1.08  backwardsubs =      1
% 0.72/1.08  selectoldest =      5
% 0.72/1.08  
% 0.72/1.08  litorderings [0] =  split
% 0.72/1.08  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.72/1.08  
% 0.72/1.08  termordering =      kbo
% 0.72/1.08  
% 0.72/1.08  litapriori =        0
% 0.72/1.08  termapriori =       1
% 0.72/1.08  litaposteriori =    0
% 0.72/1.08  termaposteriori =   0
% 0.72/1.08  demodaposteriori =  0
% 0.72/1.08  ordereqreflfact =   0
% 0.72/1.08  
% 0.72/1.08  litselect =         negord
% 0.72/1.08  
% 0.72/1.08  maxweight =         15
% 0.72/1.08  maxdepth =          30000
% 0.72/1.08  maxlength =         115
% 0.72/1.08  maxnrvars =         195
% 0.72/1.08  excuselevel =       1
% 0.72/1.08  increasemaxweight = 1
% 0.72/1.08  
% 0.72/1.08  maxselected =       10000000
% 0.72/1.08  maxnrclauses =      10000000
% 0.72/1.08  
% 0.72/1.08  showgenerated =    0
% 0.72/1.08  showkept =         0
% 0.72/1.08  showselected =     0
% 0.72/1.08  showdeleted =      0
% 0.72/1.08  showresimp =       1
% 0.72/1.08  showstatus =       2000
% 0.72/1.08  
% 0.72/1.08  prologoutput =     1
% 0.72/1.08  nrgoals =          5000000
% 0.72/1.08  totalproof =       1
% 0.72/1.08  
% 0.72/1.08  Symbols occurring in the translation:
% 0.72/1.08  
% 0.72/1.08  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.72/1.08  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.72/1.08  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.72/1.08  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.08  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.08  identity  [40, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.72/1.08  'double_divide'  [41, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.72/1.08  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.72/1.08  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.72/1.08  a1  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Starting Search:
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Bliksems!, er is een bewijs:
% 0.72/1.08  % SZS status Unsatisfiable
% 0.72/1.08  % SZS output start Refutation
% 0.72/1.08  
% 0.72/1.08  clause( 0, [ =( 'double_divide'( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ), identity ) ), Z ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 9, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( identity
% 0.72/1.08    , 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) ), Z ) ]
% 0.72/1.08     )
% 0.72/1.08  .
% 0.72/1.08  clause( 10, [ =( multiply( multiply( Y, X ), 'double_divide'( X, Y ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 15, [ =( 'double_divide'( Y, multiply( X, 'double_divide'( identity
% 0.72/1.08    , inverse( inverse( Y ) ) ) ) ), inverse( X ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 18, [ =( inverse( multiply( inverse( inverse( X ) ), identity ) ), 
% 0.72/1.08    'double_divide'( X, inverse( identity ) ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 20, [ =( 'double_divide'( X, 'double_divide'( X, inverse( identity
% 0.72/1.08     ) ) ), inverse( identity ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 24, [ =( 'double_divide'( X, multiply( inverse( X ), identity ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  .
% 0.72/1.08  clause( 32, [] )
% 0.72/1.08  .
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  % SZS output end Refutation
% 0.72/1.08  found a proof!
% 0.72/1.08  
% 0.72/1.08  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.08  
% 0.72/1.08  initialclauses(
% 0.72/1.08  [ clause( 34, [ =( 'double_divide'( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ), identity ) ), Z ) ] )
% 0.72/1.08  , clause( 35, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.72/1.08     ), identity ) ) ] )
% 0.72/1.08  , clause( 36, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.72/1.08  , clause( 37, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 38, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.08  ] ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 0, [ =( 'double_divide'( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ), identity ) ), Z ) ] )
% 0.72/1.08  , clause( 34, [ =( 'double_divide'( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ), identity ) ), Z ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.08    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 41, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , clause( 35, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.72/1.08     ), identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , clause( 41, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 44, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 36, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 44, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 48, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , clause( 37, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , clause( 48, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.08  , clause( 38, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 56, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.08    multiply( X, Y ) ) ] )
% 0.72/1.08  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.72/1.08    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.72/1.08  , clause( 56, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 59, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 62, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 59, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.08    :=( Y, inverse( X ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  , clause( 62, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 65, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 68, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 65, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.08    :=( Y, identity )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , clause( 68, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 74, [ =( 'double_divide'( X, inverse( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ) ) ), Z ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 0, [ =( 'double_divide'( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ), identity ) ), Z ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, 'double_divide'( 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( 'double_divide'( X, identity ), 
% 0.72/1.08    'double_divide'( Y, Z ) ) ), Y ) )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.08    :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 78, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( identity
% 0.72/1.08    , 'double_divide'( 'double_divide'( X, identity ), 'double_divide'( Y, Z
% 0.72/1.08     ) ) ) ) ), Z ) ] )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, clause( 74, [ =( 'double_divide'( X, inverse( 'double_divide'( 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( 'double_divide'( X, identity
% 0.72/1.08     ), 'double_divide'( Y, Z ) ) ), Y ) ) ), Z ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, Y ), :=( Y, 'double_divide'( identity, 
% 0.72/1.08    'double_divide'( 'double_divide'( X, identity ), 'double_divide'( Y, Z )
% 0.72/1.08     ) ) )] ), substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 79, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( identity
% 0.72/1.08    , 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) ), Z ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 78, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( 'double_divide'( X, identity ), 
% 0.72/1.08    'double_divide'( Y, Z ) ) ) ) ), Z ) ] )
% 0.72/1.08  , 0, 8, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.08    :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 9, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( identity
% 0.72/1.08    , 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) ), Z ) ]
% 0.72/1.08     )
% 0.72/1.08  , clause( 79, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08    , Z ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.08    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 82, [ =( inverse( identity ), multiply( inverse( X ), X ) ) ] )
% 0.72/1.08  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 85, [ =( inverse( identity ), multiply( multiply( Y, X ), 
% 0.72/1.08    'double_divide'( X, Y ) ) ) ] )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, clause( 82, [ =( inverse( identity ), multiply( inverse( X ), X ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, 4, substitution( 0, [ :=( X, Y ), :=( Y, X )] ), substitution( 1, [ 
% 0.72/1.08    :=( X, 'double_divide'( X, Y ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 86, [ =( multiply( multiply( X, Y ), 'double_divide'( Y, X ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  , clause( 85, [ =( inverse( identity ), multiply( multiply( Y, X ), 
% 0.72/1.08    'double_divide'( X, Y ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 10, [ =( multiply( multiply( Y, X ), 'double_divide'( X, Y ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  , clause( 86, [ =( multiply( multiply( X, Y ), 'double_divide'( Y, X ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 88, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.72/1.08  , clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 89, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  , 0, clause( 88, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, a1 )] ), substitution( 1, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 90, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.08  , clause( 89, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.08  , clause( 90, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 92, [ =( Z, 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , clause( 9, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08    , Z ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 94, [ =( inverse( X ), 'double_divide'( Y, multiply( X, 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( inverse( Y ), identity ) ) )
% 0.72/1.08     ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 92, [ =( Z, 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , 0, 12, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, Y ), 
% 0.72/1.08    :=( Y, X ), :=( Z, inverse( X ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 95, [ =( inverse( X ), 'double_divide'( Y, multiply( X, 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( Y ) ) ) ) ) ) ] )
% 0.72/1.08  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.08  , 0, clause( 94, [ =( inverse( X ), 'double_divide'( Y, multiply( X, 
% 0.72/1.08    'double_divide'( identity, 'double_divide'( inverse( Y ), identity ) ) )
% 0.72/1.08     ) ) ] )
% 0.72/1.08  , 0, 9, substitution( 0, [ :=( X, inverse( Y ) )] ), substitution( 1, [ 
% 0.72/1.08    :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 96, [ =( 'double_divide'( Y, multiply( X, 'double_divide'( identity
% 0.72/1.08    , inverse( inverse( Y ) ) ) ) ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 95, [ =( inverse( X ), 'double_divide'( Y, multiply( X, 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( Y ) ) ) ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 15, [ =( 'double_divide'( Y, multiply( X, 'double_divide'( identity
% 0.72/1.08    , inverse( inverse( Y ) ) ) ) ), inverse( X ) ) ] )
% 0.72/1.08  , clause( 96, [ =( 'double_divide'( Y, multiply( X, 'double_divide'( 
% 0.72/1.08    identity, inverse( inverse( Y ) ) ) ) ), inverse( X ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.08     )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 98, [ =( inverse( Y ), 'double_divide'( X, multiply( Y, 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( X ) ) ) ) ) ) ] )
% 0.72/1.08  , clause( 15, [ =( 'double_divide'( Y, multiply( X, 'double_divide'( 
% 0.72/1.08    identity, inverse( inverse( Y ) ) ) ) ), inverse( X ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 101, [ =( inverse( multiply( inverse( inverse( X ) ), identity ) )
% 0.72/1.08    , 'double_divide'( X, inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 10, [ =( multiply( multiply( Y, X ), 'double_divide'( X, Y ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  , 0, clause( 98, [ =( inverse( Y ), 'double_divide'( X, multiply( Y, 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( X ) ) ) ) ) ) ] )
% 0.72/1.08  , 0, 9, substitution( 0, [ :=( X, identity ), :=( Y, inverse( inverse( X )
% 0.72/1.08     ) )] ), substitution( 1, [ :=( X, X ), :=( Y, multiply( inverse( inverse( 
% 0.72/1.08    X ) ), identity ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 18, [ =( inverse( multiply( inverse( inverse( X ) ), identity ) ), 
% 0.72/1.08    'double_divide'( X, inverse( identity ) ) ) ] )
% 0.72/1.08  , clause( 101, [ =( inverse( multiply( inverse( inverse( X ) ), identity )
% 0.72/1.08     ), 'double_divide'( X, inverse( identity ) ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 104, [ =( inverse( Y ), 'double_divide'( X, multiply( Y, 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( X ) ) ) ) ) ) ] )
% 0.72/1.08  , clause( 15, [ =( 'double_divide'( Y, multiply( X, 'double_divide'( 
% 0.72/1.08    identity, inverse( inverse( Y ) ) ) ) ), inverse( X ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 107, [ =( inverse( identity ), 'double_divide'( X, inverse( inverse( 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( X ) ) ) ) ) ) ) ] )
% 0.72/1.08  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.08  , 0, clause( 104, [ =( inverse( Y ), 'double_divide'( X, multiply( Y, 
% 0.72/1.08    'double_divide'( identity, inverse( inverse( X ) ) ) ) ) ) ] )
% 0.72/1.08  , 0, 5, substitution( 0, [ :=( X, 'double_divide'( identity, inverse( 
% 0.72/1.08    inverse( X ) ) ) )] ), substitution( 1, [ :=( X, X ), :=( Y, identity )] )
% 0.72/1.08    ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 108, [ =( inverse( identity ), 'double_divide'( X, inverse( 
% 0.72/1.08    multiply( inverse( inverse( X ) ), identity ) ) ) ) ] )
% 0.72/1.08  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, clause( 107, [ =( inverse( identity ), 'double_divide'( X, inverse( 
% 0.72/1.08    inverse( 'double_divide'( identity, inverse( inverse( X ) ) ) ) ) ) ) ]
% 0.72/1.08     )
% 0.72/1.08  , 0, 6, substitution( 0, [ :=( X, inverse( inverse( X ) ) ), :=( Y, 
% 0.72/1.08    identity )] ), substitution( 1, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 109, [ =( inverse( identity ), 'double_divide'( X, 'double_divide'( 
% 0.72/1.08    X, inverse( identity ) ) ) ) ] )
% 0.72/1.08  , clause( 18, [ =( inverse( multiply( inverse( inverse( X ) ), identity ) )
% 0.72/1.08    , 'double_divide'( X, inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, clause( 108, [ =( inverse( identity ), 'double_divide'( X, inverse( 
% 0.72/1.08    multiply( inverse( inverse( X ) ), identity ) ) ) ) ] )
% 0.72/1.08  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.72/1.08    ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 110, [ =( 'double_divide'( X, 'double_divide'( X, inverse( identity
% 0.72/1.08     ) ) ), inverse( identity ) ) ] )
% 0.72/1.08  , clause( 109, [ =( inverse( identity ), 'double_divide'( X, 
% 0.72/1.08    'double_divide'( X, inverse( identity ) ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 20, [ =( 'double_divide'( X, 'double_divide'( X, inverse( identity
% 0.72/1.08     ) ) ), inverse( identity ) ) ] )
% 0.72/1.08  , clause( 110, [ =( 'double_divide'( X, 'double_divide'( X, inverse( 
% 0.72/1.08    identity ) ) ), inverse( identity ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 112, [ =( Z, 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , clause( 9, [ =( 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08    , Z ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 114, [ =( inverse( identity ), 'double_divide'( X, multiply( 
% 0.72/1.08    inverse( X ), 'double_divide'( identity, inverse( identity ) ) ) ) ) ] )
% 0.72/1.08  , clause( 20, [ =( 'double_divide'( X, 'double_divide'( X, inverse( 
% 0.72/1.08    identity ) ) ), inverse( identity ) ) ] )
% 0.72/1.08  , 0, clause( 112, [ =( Z, 'double_divide'( X, multiply( Y, 'double_divide'( 
% 0.72/1.08    identity, 'double_divide'( inverse( X ), 'double_divide'( Y, Z ) ) ) ) )
% 0.72/1.08     ) ] )
% 0.72/1.08  , 0, 10, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.72/1.08    :=( X, X ), :=( Y, inverse( X ) ), :=( Z, inverse( identity ) )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 116, [ =( inverse( identity ), 'double_divide'( X, multiply( 
% 0.72/1.08    inverse( X ), identity ) ) ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 114, [ =( inverse( identity ), 'double_divide'( X, multiply( 
% 0.72/1.08    inverse( X ), 'double_divide'( identity, inverse( identity ) ) ) ) ) ] )
% 0.72/1.08  , 0, 8, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 117, [ =( 'double_divide'( X, multiply( inverse( X ), identity ) )
% 0.72/1.08    , inverse( identity ) ) ] )
% 0.72/1.08  , clause( 116, [ =( inverse( identity ), 'double_divide'( X, multiply( 
% 0.72/1.08    inverse( X ), identity ) ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 24, [ =( 'double_divide'( X, multiply( inverse( X ), identity ) ), 
% 0.72/1.08    inverse( identity ) ) ] )
% 0.72/1.08  , clause( 117, [ =( 'double_divide'( X, multiply( inverse( X ), identity )
% 0.72/1.08     ), inverse( identity ) ) ] )
% 0.72/1.08  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  eqswap(
% 0.72/1.08  clause( 119, [ =( inverse( identity ), 'double_divide'( X, multiply( 
% 0.72/1.08    inverse( X ), identity ) ) ) ] )
% 0.72/1.08  , clause( 24, [ =( 'double_divide'( X, multiply( inverse( X ), identity ) )
% 0.72/1.08    , inverse( identity ) ) ] )
% 0.72/1.08  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 121, [ =( inverse( identity ), 'double_divide'( identity, inverse( 
% 0.72/1.08    identity ) ) ) ] )
% 0.72/1.08  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.08  , 0, clause( 119, [ =( inverse( identity ), 'double_divide'( X, multiply( 
% 0.72/1.08    inverse( X ), identity ) ) ) ] )
% 0.72/1.08  , 0, 5, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.08    identity )] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  paramod(
% 0.72/1.08  clause( 122, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.08  , 0, clause( 121, [ =( inverse( identity ), 'double_divide'( identity, 
% 0.72/1.08    inverse( identity ) ) ) ] )
% 0.72/1.08  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , clause( 122, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  resolution(
% 0.72/1.08  clause( 126, [] )
% 0.72/1.08  , clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.08  , 0, clause( 29, [ =( inverse( identity ), identity ) ] )
% 0.72/1.08  , 0, substitution( 0, [] ), substitution( 1, [] )).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  subsumption(
% 0.72/1.08  clause( 32, [] )
% 0.72/1.08  , clause( 126, [] )
% 0.72/1.08  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  end.
% 0.72/1.08  
% 0.72/1.08  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.08  
% 0.72/1.08  Memory use:
% 0.72/1.08  
% 0.72/1.08  space for terms:        455
% 0.72/1.08  space for clauses:      3931
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  clauses generated:      81
% 0.72/1.08  clauses kept:           33
% 0.72/1.08  clauses selected:       13
% 0.72/1.08  clauses deleted:        4
% 0.72/1.08  clauses inuse deleted:  0
% 0.72/1.08  
% 0.72/1.08  subsentry:          234
% 0.72/1.08  literals s-matched: 92
% 0.72/1.08  literals matched:   92
% 0.72/1.08  full subsumption:   0
% 0.72/1.08  
% 0.72/1.08  checksum:           -1713832597
% 0.72/1.08  
% 0.72/1.08  
% 0.72/1.08  Bliksem ended
%------------------------------------------------------------------------------