TSTP Solution File: GRP481-1 by Z3---4.8.9.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Z3---4.8.9.0
% Problem  : GRP481-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp
% Command  : z3_tptp -proof -model -t:%d -file:%s

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep 16 22:27:44 EDT 2022

% Result   : Unsatisfiable 0.63s 0.63s
% Output   : Proof 0.63s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   25
%            Number of leaves      :   29
% Syntax   : Number of formulae    :   88 (  64 unt;   5 typ;   0 def)
%            Number of atoms       :  110 ( 105 equ)
%            Maximal formula atoms :    2 (   1 avg)
%            Number of connectives :   37 (  14   ~;  10   |;   0   &)
%                                         (  13 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   2 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of FOOLs       :    4 (   4 fml;   0 var)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   92 (  84   !;   0   ?;  92   :)

% Comments : 
%------------------------------------------------------------------------------
tff(identity_type,type,
    identity: $i ).

tff(multiply_type,type,
    multiply: ( $i * $i ) > $i ).

tff(a1_type,type,
    a1: $i ).

tff(inverse_type,type,
    inverse: $i > $i ).

tff(double_divide_type,type,
    double_divide: ( $i * $i ) > $i ).

tff(1,plain,
    ^ [A: $i] :
      refl(
        ( ( identity = double_divide(A,inverse(A)) )
      <=> ( identity = double_divide(A,inverse(A)) ) )),
    inference(bind,[status(th)],]) ).

tff(2,plain,
    ( ! [A: $i] : ( identity = double_divide(A,inverse(A)) )
  <=> ! [A: $i] : ( identity = double_divide(A,inverse(A)) ) ),
    inference(quant_intro,[status(thm)],[1]) ).

tff(3,plain,
    ( ! [A: $i] : ( identity = double_divide(A,inverse(A)) )
  <=> ! [A: $i] : ( identity = double_divide(A,inverse(A)) ) ),
    inference(rewrite,[status(thm)],]) ).

tff(4,axiom,
    ! [A: $i] : ( identity = double_divide(A,inverse(A)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',identity) ).

tff(5,plain,
    ! [A: $i] : ( identity = double_divide(A,inverse(A)) ),
    inference(modus_ponens,[status(thm)],[4,3]) ).

tff(6,plain,
    ! [A: $i] : ( identity = double_divide(A,inverse(A)) ),
    inference(skolemize,[status(sab)],[5]) ).

tff(7,plain,
    ! [A: $i] : ( identity = double_divide(A,inverse(A)) ),
    inference(modus_ponens,[status(thm)],[6,2]) ).

tff(8,plain,
    ( ~ ! [A: $i] : ( identity = double_divide(A,inverse(A)) )
    | ( identity = double_divide(a1,inverse(a1)) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(9,plain,
    identity = double_divide(a1,inverse(a1)),
    inference(unit_resolution,[status(thm)],[8,7]) ).

tff(10,plain,
    double_divide(a1,inverse(a1)) = identity,
    inference(symmetry,[status(thm)],[9]) ).

tff(11,plain,
    ^ [B: $i,D: $i,A: $i,C: $i] :
      refl(
        ( ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C )
      <=> ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ) )),
    inference(bind,[status(th)],]) ).

tff(12,plain,
    ( ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C )
  <=> ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ) ),
    inference(quant_intro,[status(thm)],[11]) ).

tff(13,plain,
    ( ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C )
  <=> ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ) ),
    inference(rewrite,[status(thm)],]) ).

tff(14,axiom,
    ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

tff(15,plain,
    ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ),
    inference(modus_ponens,[status(thm)],[14,13]) ).

tff(16,plain,
    ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ),
    inference(skolemize,[status(sab)],[15]) ).

tff(17,plain,
    ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C ),
    inference(modus_ponens,[status(thm)],[16,12]) ).

tff(18,plain,
    ( ~ ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C )
    | ( double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))) = double_divide(a1,inverse(a1)) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(19,plain,
    double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))) = double_divide(a1,inverse(a1)),
    inference(unit_resolution,[status(thm)],[18,17]) ).

tff(20,plain,
    ( ~ ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C )
    | ( double_divide(double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity))),double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(a1,inverse(a1)) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(21,plain,
    double_divide(double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity))),double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(a1,inverse(a1)),
    inference(unit_resolution,[status(thm)],[20,17]) ).

tff(22,plain,
    ( ~ ! [A: $i] : ( identity = double_divide(A,inverse(A)) )
    | ( identity = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),inverse(double_divide(double_divide(a1,inverse(a1)),identity))) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(23,plain,
    identity = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),inverse(double_divide(double_divide(a1,inverse(a1)),identity))),
    inference(unit_resolution,[status(thm)],[22,7]) ).

tff(24,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),inverse(double_divide(double_divide(a1,inverse(a1)),identity))) = identity,
    inference(symmetry,[status(thm)],[23]) ).

tff(25,plain,
    ^ [A: $i] :
      refl(
        ( ( inverse(A) = double_divide(A,identity) )
      <=> ( inverse(A) = double_divide(A,identity) ) )),
    inference(bind,[status(th)],]) ).

tff(26,plain,
    ( ! [A: $i] : ( inverse(A) = double_divide(A,identity) )
  <=> ! [A: $i] : ( inverse(A) = double_divide(A,identity) ) ),
    inference(quant_intro,[status(thm)],[25]) ).

tff(27,plain,
    ( ! [A: $i] : ( inverse(A) = double_divide(A,identity) )
  <=> ! [A: $i] : ( inverse(A) = double_divide(A,identity) ) ),
    inference(rewrite,[status(thm)],]) ).

tff(28,axiom,
    ! [A: $i] : ( inverse(A) = double_divide(A,identity) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

tff(29,plain,
    ! [A: $i] : ( inverse(A) = double_divide(A,identity) ),
    inference(modus_ponens,[status(thm)],[28,27]) ).

tff(30,plain,
    ! [A: $i] : ( inverse(A) = double_divide(A,identity) ),
    inference(skolemize,[status(sab)],[29]) ).

tff(31,plain,
    ! [A: $i] : ( inverse(A) = double_divide(A,identity) ),
    inference(modus_ponens,[status(thm)],[30,26]) ).

tff(32,plain,
    ( ~ ! [A: $i] : ( inverse(A) = double_divide(A,identity) )
    | ( inverse(double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(33,plain,
    inverse(double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity),
    inference(unit_resolution,[status(thm)],[32,31]) ).

tff(34,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity) = inverse(double_divide(double_divide(a1,inverse(a1)),identity)),
    inference(symmetry,[status(thm)],[33]) ).

tff(35,plain,
    ( ~ ! [A: $i] : ( inverse(A) = double_divide(A,identity) )
    | ( inverse(a1) = double_divide(a1,identity) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(36,plain,
    inverse(a1) = double_divide(a1,identity),
    inference(unit_resolution,[status(thm)],[35,31]) ).

tff(37,plain,
    double_divide(a1,identity) = inverse(a1),
    inference(symmetry,[status(thm)],[36]) ).

tff(38,plain,
    double_divide(a1,double_divide(a1,identity)) = double_divide(a1,inverse(a1)),
    inference(monotonicity,[status(thm)],[37]) ).

tff(39,plain,
    double_divide(a1,double_divide(a1,identity)) = identity,
    inference(transitivity,[status(thm)],[38,10]) ).

tff(40,plain,
    double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(monotonicity,[status(thm)],[39]) ).

tff(41,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)) = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),inverse(double_divide(double_divide(a1,inverse(a1)),identity))),
    inference(monotonicity,[status(thm)],[40,34]) ).

tff(42,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)) = identity,
    inference(transitivity,[status(thm)],[41,24]) ).

tff(43,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)) = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),inverse(double_divide(double_divide(a1,inverse(a1)),identity))),
    inference(monotonicity,[status(thm)],[34]) ).

tff(44,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)) = double_divide(a1,inverse(a1)),
    inference(transitivity,[status(thm)],[43,24,9]) ).

tff(45,plain,
    double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity))) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(monotonicity,[status(thm)],[44,42]) ).

tff(46,plain,
    double_divide(double_divide(a1,inverse(a1)),identity) = double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity))),
    inference(symmetry,[status(thm)],[45]) ).

tff(47,plain,
    double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))) = double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity))),
    inference(transitivity,[status(thm)],[40,46]) ).

tff(48,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity))),double_divide(double_divide(a1,inverse(a1)),identity)),
    inference(monotonicity,[status(thm)],[47]) ).

tff(49,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity)) = identity,
    inference(transitivity,[status(thm)],[48,21,10]) ).

tff(50,plain,
    ( ~ ! [A: $i] : ( identity = double_divide(A,inverse(A)) )
    | ( identity = double_divide(double_divide(a1,inverse(a1)),inverse(double_divide(a1,inverse(a1)))) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(51,plain,
    identity = double_divide(double_divide(a1,inverse(a1)),inverse(double_divide(a1,inverse(a1)))),
    inference(unit_resolution,[status(thm)],[50,7]) ).

tff(52,plain,
    double_divide(double_divide(a1,inverse(a1)),inverse(double_divide(a1,inverse(a1)))) = identity,
    inference(symmetry,[status(thm)],[51]) ).

tff(53,plain,
    ( ~ ! [A: $i] : ( inverse(A) = double_divide(A,identity) )
    | ( inverse(double_divide(a1,inverse(a1))) = double_divide(double_divide(a1,inverse(a1)),identity) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(54,plain,
    inverse(double_divide(a1,inverse(a1))) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(unit_resolution,[status(thm)],[53,31]) ).

tff(55,plain,
    double_divide(double_divide(a1,inverse(a1)),identity) = inverse(double_divide(a1,inverse(a1))),
    inference(symmetry,[status(thm)],[54]) ).

tff(56,plain,
    double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(double_divide(a1,inverse(a1)),inverse(double_divide(a1,inverse(a1)))),
    inference(monotonicity,[status(thm)],[55]) ).

tff(57,plain,
    double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(a1,inverse(a1)),
    inference(transitivity,[status(thm)],[56,52,9]) ).

tff(58,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(monotonicity,[status(thm)],[57,49]) ).

tff(59,plain,
    double_divide(double_divide(a1,inverse(a1)),identity) = double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),
    inference(symmetry,[status(thm)],[58]) ).

tff(60,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity) = double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))),
    inference(monotonicity,[status(thm)],[59,9]) ).

tff(61,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))) = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity),
    inference(monotonicity,[status(thm)],[39]) ).

tff(62,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))) = double_divide(a1,inverse(a1)),
    inference(transitivity,[status(thm)],[61,60,19]) ).

tff(63,plain,
    double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity)) = double_divide(double_divide(a1,inverse(a1)),inverse(double_divide(a1,inverse(a1)))),
    inference(monotonicity,[status(thm)],[62,55]) ).

tff(64,plain,
    double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity)) = identity,
    inference(transitivity,[status(thm)],[63,52]) ).

tff(65,plain,
    double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(monotonicity,[status(thm)],[57,64]) ).

tff(66,plain,
    double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))) = double_divide(double_divide(double_divide(a1,inverse(a1)),identity),identity),
    inference(monotonicity,[status(thm)],[65,10]) ).

tff(67,plain,
    ( ~ ! [B: $i,D: $i,A: $i,C: $i] : ( double_divide(double_divide(double_divide(A,double_divide(B,identity)),double_divide(double_divide(C,double_divide(D,double_divide(D,identity))),double_divide(A,identity))),B) = C )
    | ( double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))) = double_divide(double_divide(a1,inverse(a1)),identity) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(68,plain,
    double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(unit_resolution,[status(thm)],[67,17]) ).

tff(69,plain,
    double_divide(double_divide(a1,inverse(a1)),identity) = double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),double_divide(double_divide(a1,inverse(a1)),identity)),double_divide(double_divide(double_divide(double_divide(a1,inverse(a1)),identity),double_divide(a1,double_divide(a1,identity))),double_divide(double_divide(a1,inverse(a1)),identity))),double_divide(a1,inverse(a1))),
    inference(symmetry,[status(thm)],[68]) ).

tff(70,plain,
    ^ [B: $i,A: $i] :
      refl(
        ( ( multiply(A,B) = double_divide(double_divide(B,A),identity) )
      <=> ( multiply(A,B) = double_divide(double_divide(B,A),identity) ) )),
    inference(bind,[status(th)],]) ).

tff(71,plain,
    ( ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) )
  <=> ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) ) ),
    inference(quant_intro,[status(thm)],[70]) ).

tff(72,plain,
    ( ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) )
  <=> ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) ) ),
    inference(rewrite,[status(thm)],]) ).

tff(73,axiom,
    ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

tff(74,plain,
    ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) ),
    inference(modus_ponens,[status(thm)],[73,72]) ).

tff(75,plain,
    ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) ),
    inference(skolemize,[status(sab)],[74]) ).

tff(76,plain,
    ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) ),
    inference(modus_ponens,[status(thm)],[75,71]) ).

tff(77,plain,
    ( ~ ! [B: $i,A: $i] : ( multiply(A,B) = double_divide(double_divide(B,A),identity) )
    | ( multiply(inverse(a1),a1) = double_divide(double_divide(a1,inverse(a1)),identity) ) ),
    inference(quant_inst,[status(thm)],]) ).

tff(78,plain,
    multiply(inverse(a1),a1) = double_divide(double_divide(a1,inverse(a1)),identity),
    inference(unit_resolution,[status(thm)],[77,76]) ).

tff(79,plain,
    multiply(inverse(a1),a1) = identity,
    inference(transitivity,[status(thm)],[78,69,66,60,19,10]) ).

tff(80,plain,
    ( ( multiply(inverse(a1),a1) != identity )
  <=> ( multiply(inverse(a1),a1) != identity ) ),
    inference(rewrite,[status(thm)],]) ).

tff(81,axiom,
    multiply(inverse(a1),a1) != identity,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_1) ).

tff(82,plain,
    multiply(inverse(a1),a1) != identity,
    inference(modus_ponens,[status(thm)],[81,80]) ).

tff(83,plain,
    $false,
    inference(unit_resolution,[status(thm)],[82,79]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP481-1 : TPTP v8.1.0. Released v2.6.0.
% 0.03/0.13  % Command  : z3_tptp -proof -model -t:%d -file:%s
% 0.13/0.34  % Computer : n027.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Aug 31 17:27:02 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  Z3tptp [4.8.9.0] (c) 2006-20**. Microsoft Corp.
% 0.13/0.34  Usage: tptp [options] [-file:]file
% 0.13/0.34    -h, -?       prints this message.
% 0.13/0.34    -smt2        print SMT-LIB2 benchmark.
% 0.13/0.34    -m, -model   generate model.
% 0.13/0.34    -p, -proof   generate proof.
% 0.13/0.34    -c, -core    generate unsat core of named formulas.
% 0.13/0.34    -st, -statistics display statistics.
% 0.13/0.34    -t:timeout   set timeout (in second).
% 0.13/0.34    -smt2status  display status in smt2 format instead of SZS.
% 0.13/0.34    -check_status check the status produced by Z3 against annotation in benchmark.
% 0.13/0.34    -<param>:<value> configuration parameter and value.
% 0.13/0.34    -o:<output-file> file to place output in.
% 0.63/0.63  % SZS status Unsatisfiable
% 0.63/0.63  % SZS output start Proof
% See solution above
%------------------------------------------------------------------------------