TSTP Solution File: GRP481-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP481-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:55:44 EDT 2022

% Result   : Unsatisfiable 3.91s 3.95s
% Output   : Proof 3.91s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP481-1 : TPTP v8.1.0. Released v2.6.0.
% 0.11/0.12  % Command  : moca.sh %s
% 0.12/0.32  % Computer : n011.cluster.edu
% 0.12/0.32  % Model    : x86_64 x86_64
% 0.12/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.32  % Memory   : 8042.1875MB
% 0.12/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.32  % CPULimit : 300
% 0.12/0.32  % WCLimit  : 600
% 0.12/0.32  % DateTime : Mon Jun 13 09:42:33 EDT 2022
% 0.12/0.32  % CPUTime  : 
% 3.91/3.95  % SZS status Unsatisfiable
% 3.91/3.95  % SZS output start Proof
% 3.91/3.95  The input problem is unsatisfiable because
% 3.91/3.95  
% 3.91/3.95  [1] the following set of Horn clauses is unsatisfiable:
% 3.91/3.95  
% 3.91/3.95  	double_divide(double_divide(double_divide(A, double_divide(B, identity)), double_divide(double_divide(C, double_divide(D, double_divide(D, identity))), double_divide(A, identity))), B) = C
% 3.91/3.95  	multiply(A, B) = double_divide(double_divide(B, A), identity)
% 3.91/3.95  	inverse(A) = double_divide(A, identity)
% 3.91/3.95  	identity = double_divide(A, inverse(A))
% 3.91/3.95  	multiply(inverse(a1), a1) = identity ==> \bottom
% 3.91/3.95  
% 3.91/3.95  This holds because
% 3.91/3.95  
% 3.91/3.95  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 3.91/3.95  
% 3.91/3.95  E:
% 3.91/3.95  	double_divide(double_divide(double_divide(A, double_divide(B, identity)), double_divide(double_divide(C, double_divide(D, double_divide(D, identity))), double_divide(A, identity))), B) = C
% 3.91/3.95  	f1(identity) = false__
% 3.91/3.95  	f1(multiply(inverse(a1), a1)) = true__
% 3.91/3.95  	identity = double_divide(A, inverse(A))
% 3.91/3.95  	inverse(A) = double_divide(A, identity)
% 3.91/3.95  	multiply(A, B) = double_divide(double_divide(B, A), identity)
% 3.91/3.95  G:
% 3.91/3.95  	true__ = false__
% 3.91/3.95  
% 3.91/3.95  This holds because
% 3.91/3.95  
% 3.91/3.95  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 3.91/3.95  
% 3.91/3.95  	double_divide(double_divide(double_divide(Y0, double_divide(Y1, identity)), X2), Y1) = double_divide(double_divide(X2, identity), Y0)
% 3.91/3.95  	double_divide(double_divide(double_divide(Y0, identity), Y2), identity) = double_divide(double_divide(Y2, identity), Y0)
% 3.91/3.95  	double_divide(identity, Y1) = double_divide(Y1, identity)
% 3.91/3.95  	double_divide(Y0, double_divide(Y0, identity)) -> identity
% 3.91/3.95  	double_divide(Y0, double_divide(identity, Y0)) -> identity
% 3.91/3.95  	double_divide(double_divide(X0, identity), X0) -> identity
% 3.91/3.95  	double_divide(double_divide(Y0, identity), identity) -> Y0
% 3.91/3.95  	double_divide(double_divide(double_divide(X0, inverse(identity)), double_divide(inverse(X1), inverse(X0))), X1) -> identity
% 3.91/3.95  	double_divide(double_divide(double_divide(Y0, double_divide(Y1, identity)), double_divide(double_divide(Y2, identity), double_divide(Y0, identity))), Y1) -> Y2
% 3.91/3.95  	double_divide(double_divide(double_divide(Y0, double_divide(Y1, identity)), identity), Y1) -> double_divide(identity, Y0)
% 3.91/3.95  	double_divide(double_divide(double_divide(Y0, double_divide(identity, identity)), double_divide(double_divide(Y1, identity), double_divide(Y0, identity))), Y1) -> identity
% 3.91/3.95  	double_divide(double_divide(double_divide(double_divide(Y0, identity), double_divide(identity, identity)), identity), Y0) -> identity
% 3.91/3.95  	double_divide(double_divide(identity, double_divide(double_divide(Y0, identity), double_divide(Y1, identity))), Y1) -> Y0
% 3.91/3.95  	double_divide(double_divide(identity, double_divide(identity, double_divide(Y1, identity))), Y1) -> identity
% 3.91/3.95  	double_divide(double_divide(identity, identity), double_divide(Y0, identity)) -> Y0
% 3.91/3.95  	double_divide(double_divide(identity, identity), multiply(identity, double_divide(Y0, identity))) -> Y0
% 3.91/3.95  	double_divide(identity, double_divide(Y0, identity)) -> Y0
% 3.91/3.95  	double_divide(identity, double_divide(identity, Y0)) -> Y0
% 3.91/3.95  	double_divide(identity, double_divide(identity, double_divide(identity, double_divide(Y0, identity)))) -> Y0
% 3.91/3.95  	double_divide(identity, identity) -> identity
% 3.91/3.95  	double_divide(inverse(identity), inverse(inverse(inverse(Y2)))) -> Y2
% 3.91/3.95  	f1(double_divide(identity, identity)) -> true__
% 3.91/3.95  	f1(identity) -> false__
% 3.91/3.95  	inverse(A) -> double_divide(A, identity)
% 3.91/3.95  	multiply(A, B) -> double_divide(double_divide(B, A), identity)
% 3.91/3.95  	true__ -> false__
% 3.91/3.95  with the LPO induced by
% 3.91/3.95  	a1 > multiply > inverse > double_divide > identity > f1 > true__ > false__
% 3.91/3.95  
% 3.91/3.95  % SZS output end Proof
% 3.91/3.95  
%------------------------------------------------------------------------------