TSTP Solution File: GRP481-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP481-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:14 EDT 2022

% Result   : Unsatisfiable 0.47s 1.11s
% Output   : Refutation 0.47s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.14  % Problem  : GRP481-1 : TPTP v8.1.0. Released v2.6.0.
% 0.08/0.14  % Command  : bliksem %s
% 0.15/0.36  % Computer : n024.cluster.edu
% 0.15/0.36  % Model    : x86_64 x86_64
% 0.15/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.36  % Memory   : 8042.1875MB
% 0.15/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.36  % CPULimit : 300
% 0.15/0.36  % DateTime : Mon Jun 13 09:48:18 EDT 2022
% 0.15/0.36  % CPUTime  : 
% 0.47/1.11  *** allocated 10000 integers for termspace/termends
% 0.47/1.11  *** allocated 10000 integers for clauses
% 0.47/1.11  *** allocated 10000 integers for justifications
% 0.47/1.11  Bliksem 1.12
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  Automatic Strategy Selection
% 0.47/1.11  
% 0.47/1.11  Clauses:
% 0.47/1.11  [
% 0.47/1.11     [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), 'double_divide'( 
% 0.47/1.11    X, identity ) ) ), Y ), Z ) ],
% 0.47/1.11     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.47/1.11    identity ) ) ],
% 0.47/1.11     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.47/1.11     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.47/1.11     [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ]
% 0.47/1.11  ] .
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  percentage equality = 1.000000, percentage horn = 1.000000
% 0.47/1.11  This is a pure equality problem
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  Options Used:
% 0.47/1.11  
% 0.47/1.11  useres =            1
% 0.47/1.11  useparamod =        1
% 0.47/1.11  useeqrefl =         1
% 0.47/1.11  useeqfact =         1
% 0.47/1.11  usefactor =         1
% 0.47/1.11  usesimpsplitting =  0
% 0.47/1.11  usesimpdemod =      5
% 0.47/1.11  usesimpres =        3
% 0.47/1.11  
% 0.47/1.11  resimpinuse      =  1000
% 0.47/1.11  resimpclauses =     20000
% 0.47/1.11  substype =          eqrewr
% 0.47/1.11  backwardsubs =      1
% 0.47/1.11  selectoldest =      5
% 0.47/1.11  
% 0.47/1.11  litorderings [0] =  split
% 0.47/1.11  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.47/1.11  
% 0.47/1.11  termordering =      kbo
% 0.47/1.11  
% 0.47/1.11  litapriori =        0
% 0.47/1.11  termapriori =       1
% 0.47/1.11  litaposteriori =    0
% 0.47/1.11  termaposteriori =   0
% 0.47/1.11  demodaposteriori =  0
% 0.47/1.11  ordereqreflfact =   0
% 0.47/1.11  
% 0.47/1.11  litselect =         negord
% 0.47/1.11  
% 0.47/1.11  maxweight =         15
% 0.47/1.11  maxdepth =          30000
% 0.47/1.11  maxlength =         115
% 0.47/1.11  maxnrvars =         195
% 0.47/1.11  excuselevel =       1
% 0.47/1.11  increasemaxweight = 1
% 0.47/1.11  
% 0.47/1.11  maxselected =       10000000
% 0.47/1.11  maxnrclauses =      10000000
% 0.47/1.11  
% 0.47/1.11  showgenerated =    0
% 0.47/1.11  showkept =         0
% 0.47/1.11  showselected =     0
% 0.47/1.11  showdeleted =      0
% 0.47/1.11  showresimp =       1
% 0.47/1.11  showstatus =       2000
% 0.47/1.11  
% 0.47/1.11  prologoutput =     1
% 0.47/1.11  nrgoals =          5000000
% 0.47/1.11  totalproof =       1
% 0.47/1.11  
% 0.47/1.11  Symbols occurring in the translation:
% 0.47/1.11  
% 0.47/1.11  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.47/1.11  .  [1, 2]      (w:1, o:21, a:1, s:1, b:0), 
% 0.47/1.11  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.47/1.11  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.47/1.11  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.47/1.11  identity  [41, 0]      (w:1, o:11, a:1, s:1, b:0), 
% 0.47/1.11  'double_divide'  [42, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.47/1.11  multiply  [45, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.47/1.11  inverse  [46, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.47/1.11  a1  [47, 0]      (w:1, o:14, a:1, s:1, b:0).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  Starting Search:
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  Bliksems!, er is een bewijs:
% 0.47/1.11  % SZS status Unsatisfiable
% 0.47/1.11  % SZS output start Refutation
% 0.47/1.11  
% 0.47/1.11  clause( 0, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), 'double_divide'( 
% 0.47/1.11    X, identity ) ) ), Y ), Z ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.47/1.11    multiply( X, Y ) ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 9, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ), Z )
% 0.47/1.11     ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 14, [ =( 'double_divide'( multiply( inverse( Y ), inverse( X ) ), Y
% 0.47/1.11     ), X ) ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 17, [ =( 'double_divide'( inverse( identity ), inverse( X ) ), X )
% 0.47/1.11     ] )
% 0.47/1.11  .
% 0.47/1.11  clause( 27, [] )
% 0.47/1.11  .
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  % SZS output end Refutation
% 0.47/1.11  found a proof!
% 0.47/1.11  
% 0.47/1.11  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.47/1.11  
% 0.47/1.11  initialclauses(
% 0.47/1.11  [ clause( 29, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), 'double_divide'( 
% 0.47/1.11    X, identity ) ) ), Y ), Z ) ] )
% 0.47/1.11  , clause( 30, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.47/1.11     ), identity ) ) ] )
% 0.47/1.11  , clause( 31, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.47/1.11  , clause( 32, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.47/1.11  , clause( 33, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.47/1.11  ] ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 0, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), 'double_divide'( 
% 0.47/1.11    X, identity ) ) ), Y ), Z ) ] )
% 0.47/1.11  , clause( 29, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), 'double_divide'( 
% 0.47/1.11    X, identity ) ) ), Y ), Z ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] ), 
% 0.47/1.11    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 36, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.47/1.11    multiply( X, Y ) ) ] )
% 0.47/1.11  , clause( 30, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.47/1.11     ), identity ) ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.47/1.11    multiply( X, Y ) ) ] )
% 0.47/1.11  , clause( 36, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.47/1.11    multiply( X, Y ) ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.47/1.11     )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 39, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , clause( 31, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , clause( 39, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 43, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , clause( 32, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , clause( 43, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.47/1.11  , clause( 33, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.47/1.11  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 51, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.47/1.11     )
% 0.47/1.11  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.47/1.11    multiply( X, Y ) ) ] )
% 0.47/1.11  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.47/1.11    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.47/1.11  , clause( 51, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.47/1.11     )
% 0.47/1.11  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.47/1.11     )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 54, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.47/1.11     )
% 0.47/1.11  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.47/1.11     )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 57, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.47/1.11  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , 0, clause( 54, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.47/1.11     ) ] )
% 0.47/1.11  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.47/1.11    :=( Y, inverse( X ) )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.47/1.11  , clause( 57, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 67, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), inverse( X ) ) )
% 0.47/1.11    , Y ), Z ) ] )
% 0.47/1.11  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , 0, clause( 0, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), 'double_divide'( 
% 0.47/1.11    X, identity ) ) ), Y ), Z ) ] )
% 0.47/1.11  , 0, 16, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.47/1.11    :=( Y, Y ), :=( Z, Z ), :=( T, T )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 73, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, inverse( T ) ) ), inverse( X ) ) ), Y ), Z ) ] )
% 0.47/1.11  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , 0, clause( 67, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X
% 0.47/1.11    , 'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, 'double_divide'( T, identity ) ) ), inverse( X ) ) )
% 0.47/1.11    , Y ), Z ) ] )
% 0.47/1.11  , 0, 13, substitution( 0, [ :=( X, T )] ), substitution( 1, [ :=( X, X ), 
% 0.47/1.11    :=( Y, Y ), :=( Z, Z ), :=( T, T )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 75, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    identity ), inverse( X ) ) ), Y ), Z ) ] )
% 0.47/1.11  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , 0, clause( 73, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X
% 0.47/1.11    , 'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    'double_divide'( T, inverse( T ) ) ), inverse( X ) ) ), Y ), Z ) ] )
% 0.47/1.11  , 0, 11, substitution( 0, [ :=( X, T )] ), substitution( 1, [ :=( X, X ), 
% 0.47/1.11    :=( Y, Y ), :=( Z, Z ), :=( T, T )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 77, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    'double_divide'( Y, identity ) ), 'double_divide'( inverse( Z ), inverse( 
% 0.47/1.11    X ) ) ), Y ), Z ) ] )
% 0.47/1.11  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , 0, clause( 75, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X
% 0.47/1.11    , 'double_divide'( Y, identity ) ), 'double_divide'( 'double_divide'( Z, 
% 0.47/1.11    identity ), inverse( X ) ) ), Y ), Z ) ] )
% 0.47/1.11  , 0, 9, substitution( 0, [ :=( X, Z )] ), substitution( 1, [ :=( X, X ), 
% 0.47/1.11    :=( Y, Y ), :=( Z, Z )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 79, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ), Z )
% 0.47/1.11     ] )
% 0.47/1.11  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , 0, clause( 77, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X
% 0.47/1.11    , 'double_divide'( Y, identity ) ), 'double_divide'( inverse( Z ), 
% 0.47/1.11    inverse( X ) ) ), Y ), Z ) ] )
% 0.47/1.11  , 0, 5, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.47/1.11    :=( Y, Y ), :=( Z, Z )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 9, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ), Z )
% 0.47/1.11     ] )
% 0.47/1.11  , clause( 79, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ), Z )
% 0.47/1.11     ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.47/1.11    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 82, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.47/1.11  , clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.47/1.11  , 0, substitution( 0, [] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 83, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.47/1.11  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.47/1.11  , 0, clause( 82, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.47/1.11  , 0, 3, substitution( 0, [ :=( X, a1 )] ), substitution( 1, [] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 84, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.47/1.11  , clause( 83, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.47/1.11  , 0, substitution( 0, [] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.47/1.11  , clause( 84, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.47/1.11  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 86, [ =( Z, 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ) ) ]
% 0.47/1.11     )
% 0.47/1.11  , clause( 9, [ =( 'double_divide'( 'double_divide'( 'double_divide'( X, 
% 0.47/1.11    inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ), Z )
% 0.47/1.11     ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 90, [ =( X, 'double_divide'( 'double_divide'( 'double_divide'( 
% 0.47/1.11    inverse( X ), inverse( Y ) ), identity ), Y ) ) ] )
% 0.47/1.11  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , 0, clause( 86, [ =( Z, 'double_divide'( 'double_divide'( 'double_divide'( 
% 0.47/1.11    X, inverse( Y ) ), 'double_divide'( inverse( Z ), inverse( X ) ) ), Y ) )
% 0.47/1.11     ] )
% 0.47/1.11  , 0, 9, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.47/1.11    :=( X, inverse( X ) ), :=( Y, Y ), :=( Z, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 91, [ =( X, 'double_divide'( inverse( 'double_divide'( inverse( X )
% 0.47/1.11    , inverse( Y ) ) ), Y ) ) ] )
% 0.47/1.11  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.47/1.11  , 0, clause( 90, [ =( X, 'double_divide'( 'double_divide'( 'double_divide'( 
% 0.47/1.11    inverse( X ), inverse( Y ) ), identity ), Y ) ) ] )
% 0.47/1.11  , 0, 3, substitution( 0, [ :=( X, 'double_divide'( inverse( X ), inverse( Y
% 0.47/1.11     ) ) )] ), substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 92, [ =( X, 'double_divide'( multiply( inverse( Y ), inverse( X ) )
% 0.47/1.11    , Y ) ) ] )
% 0.47/1.11  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.47/1.11     )
% 0.47/1.11  , 0, clause( 91, [ =( X, 'double_divide'( inverse( 'double_divide'( inverse( 
% 0.47/1.11    X ), inverse( Y ) ) ), Y ) ) ] )
% 0.47/1.11  , 0, 3, substitution( 0, [ :=( X, inverse( Y ) ), :=( Y, inverse( X ) )] )
% 0.47/1.11    , substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 93, [ =( 'double_divide'( multiply( inverse( Y ), inverse( X ) ), Y
% 0.47/1.11     ), X ) ] )
% 0.47/1.11  , clause( 92, [ =( X, 'double_divide'( multiply( inverse( Y ), inverse( X )
% 0.47/1.11     ), Y ) ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 14, [ =( 'double_divide'( multiply( inverse( Y ), inverse( X ) ), Y
% 0.47/1.11     ), X ) ] )
% 0.47/1.11  , clause( 93, [ =( 'double_divide'( multiply( inverse( Y ), inverse( X ) )
% 0.47/1.11    , Y ), X ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.47/1.11     )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 95, [ =( Y, 'double_divide'( multiply( inverse( X ), inverse( Y ) )
% 0.47/1.11    , X ) ) ] )
% 0.47/1.11  , clause( 14, [ =( 'double_divide'( multiply( inverse( Y ), inverse( X ) )
% 0.47/1.11    , Y ), X ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 96, [ =( X, 'double_divide'( inverse( identity ), inverse( X ) ) )
% 0.47/1.11     ] )
% 0.47/1.11  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.47/1.11  , 0, clause( 95, [ =( Y, 'double_divide'( multiply( inverse( X ), inverse( 
% 0.47/1.11    Y ) ), X ) ) ] )
% 0.47/1.11  , 0, 3, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.47/1.11    :=( X, inverse( X ) ), :=( Y, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 97, [ =( 'double_divide'( inverse( identity ), inverse( X ) ), X )
% 0.47/1.11     ] )
% 0.47/1.11  , clause( 96, [ =( X, 'double_divide'( inverse( identity ), inverse( X ) )
% 0.47/1.11     ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 17, [ =( 'double_divide'( inverse( identity ), inverse( X ) ), X )
% 0.47/1.11     ] )
% 0.47/1.11  , clause( 97, [ =( 'double_divide'( inverse( identity ), inverse( X ) ), X
% 0.47/1.11     ) ] )
% 0.47/1.11  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  eqswap(
% 0.47/1.11  clause( 98, [ =( X, 'double_divide'( inverse( identity ), inverse( X ) ) )
% 0.47/1.11     ] )
% 0.47/1.11  , clause( 17, [ =( 'double_divide'( inverse( identity ), inverse( X ) ), X
% 0.47/1.11     ) ] )
% 0.47/1.11  , 0, substitution( 0, [ :=( X, X )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  paramod(
% 0.47/1.11  clause( 101, [ =( inverse( identity ), identity ) ] )
% 0.47/1.11  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.47/1.11  , 0, clause( 98, [ =( X, 'double_divide'( inverse( identity ), inverse( X )
% 0.47/1.11     ) ) ] )
% 0.47/1.11  , 0, 3, substitution( 0, [ :=( X, inverse( identity ) )] ), substitution( 1
% 0.47/1.11    , [ :=( X, inverse( identity ) )] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  resolution(
% 0.47/1.11  clause( 102, [] )
% 0.47/1.11  , clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.47/1.11  , 0, clause( 101, [ =( inverse( identity ), identity ) ] )
% 0.47/1.11  , 0, substitution( 0, [] ), substitution( 1, [] )).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  subsumption(
% 0.47/1.11  clause( 27, [] )
% 0.47/1.11  , clause( 102, [] )
% 0.47/1.11  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  end.
% 0.47/1.11  
% 0.47/1.11  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.47/1.11  
% 0.47/1.11  Memory use:
% 0.47/1.11  
% 0.47/1.11  space for terms:        390
% 0.47/1.11  space for clauses:      3294
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  clauses generated:      62
% 0.47/1.11  clauses kept:           28
% 0.47/1.11  clauses selected:       11
% 0.47/1.11  clauses deleted:        2
% 0.47/1.11  clauses inuse deleted:  0
% 0.47/1.11  
% 0.47/1.11  subsentry:          222
% 0.47/1.11  literals s-matched: 80
% 0.47/1.11  literals matched:   80
% 0.47/1.11  full subsumption:   0
% 0.47/1.11  
% 0.47/1.11  checksum:           312500560
% 0.47/1.11  
% 0.47/1.11  
% 0.47/1.11  Bliksem ended
%------------------------------------------------------------------------------