TSTP Solution File: GRP476-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP476-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:20:28 EDT 2023

% Result   : Unsatisfiable 0.18s 0.60s
% Output   : CNFRefutation 0.18s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   36 (  31 unt;   5 typ;   0 def)
%            Number of atoms       :   31 (  30 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    3 (   3   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  105 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    divide: ( $i * $i ) > $i ).

tff(decl_23,type,
    inverse: $i > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    b2: $i ).

tff(decl_26,type,
    a2: $i ).

cnf(single_axiom,axiom,
    divide(inverse(divide(divide(divide(X1,X2),X3),divide(X4,X3))),divide(X2,X1)) = X4,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_2,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms_2) ).

cnf(multiply,axiom,
    multiply(X1,X2) = divide(X1,inverse(X2)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_0_3,axiom,
    divide(inverse(divide(divide(divide(X1,X2),X3),divide(X4,X3))),divide(X2,X1)) = X4,
    single_axiom ).

cnf(c_0_4,plain,
    divide(inverse(divide(divide(divide(X1,X2),divide(X3,X4)),X5)),divide(X2,X1)) = inverse(divide(divide(divide(X4,X3),X6),divide(X5,X6))),
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_5,plain,
    inverse(divide(divide(divide(X1,X2),X3),divide(divide(X4,divide(X2,X1)),X3))) = X4,
    inference(spm,[status(thm)],[c_0_3,c_0_4]) ).

cnf(c_0_6,plain,
    divide(inverse(divide(divide(X1,X2),divide(X3,X2))),divide(divide(X4,X5),inverse(divide(divide(divide(X5,X4),X6),divide(X1,X6))))) = X3,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_7,plain,
    divide(inverse(divide(divide(divide(divide(X1,X2),inverse(divide(divide(divide(X2,X1),X3),divide(X4,X3)))),X5),divide(X6,X5))),X4) = X6,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_8,plain,
    inverse(divide(divide(X1,X2),divide(X3,X2))) = inverse(divide(divide(X1,X4),divide(X3,X4))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_5,c_0_6]),c_0_3]) ).

cnf(c_0_9,plain,
    divide(divide(inverse(divide(divide(divide(X1,X2),X3),X4)),divide(X2,X1)),X3) = X4,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_4]),c_0_3]) ).

cnf(c_0_10,plain,
    divide(X1,divide(divide(X2,X3),inverse(divide(divide(divide(X3,X2),X4),divide(divide(X5,X6),X4))))) = divide(X1,divide(X6,X5)),
    inference(spm,[status(thm)],[c_0_6,c_0_5]) ).

cnf(c_0_11,plain,
    inverse(divide(divide(X1,X2),divide(inverse(divide(divide(divide(X3,X4),X5),divide(X6,X5))),X2))) = inverse(divide(divide(X1,divide(X4,X3)),X6)),
    inference(spm,[status(thm)],[c_0_8,c_0_3]) ).

cnf(c_0_12,plain,
    divide(divide(X1,X2),inverse(divide(divide(divide(X2,X1),X3),divide(divide(X4,X5),X3)))) = divide(X5,X4),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_9,c_0_10]),c_0_9]) ).

cnf(c_0_13,plain,
    divide(inverse(divide(X1,divide(X2,X3))),divide(divide(X4,X5),inverse(divide(divide(divide(X5,X4),X3),X1)))) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_6,c_0_7]),c_0_11]),c_0_3]) ).

cnf(c_0_14,plain,
    inverse(divide(divide(divide(X1,divide(X2,X3)),X4),divide(divide(X5,X6),X4))) = divide(divide(inverse(divide(X6,X5)),divide(X3,X2)),X1),
    inference(spm,[status(thm)],[c_0_9,c_0_12]) ).

cnf(c_0_15,plain,
    divide(divide(divide(inverse(divide(X1,X2)),divide(X3,X4)),X5),divide(divide(X4,X3),X5)) = divide(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_14]),c_0_12]) ).

cnf(c_0_16,plain,
    inverse(divide(X1,divide(divide(X2,divide(divide(X3,X4),inverse(divide(divide(divide(X4,X3),X5),X1)))),X5))) = X2,
    inference(spm,[status(thm)],[c_0_5,c_0_9]) ).

cnf(c_0_17,plain,
    divide(divide(divide(X1,X2),inverse(divide(X3,X4))),inverse(divide(X4,X3))) = divide(X1,X2),
    inference(spm,[status(thm)],[c_0_12,c_0_15]) ).

cnf(c_0_18,plain,
    divide(inverse(divide(X1,X2)),divide(divide(X3,X4),inverse(divide(X2,X1)))) = divide(X4,X3),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_15]),c_0_12]) ).

cnf(c_0_19,plain,
    inverse(divide(divide(divide(X1,X2),inverse(divide(X2,X1))),X3)) = X3,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16,c_0_17]),c_0_18]) ).

cnf(c_0_20,plain,
    divide(divide(X1,inverse(X2)),X2) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_7,c_0_19]),c_0_3]) ).

cnf(c_0_21,plain,
    inverse(divide(X1,X2)) = divide(X2,X1),
    inference(spm,[status(thm)],[c_0_19,c_0_20]) ).

cnf(c_0_22,plain,
    divide(X1,divide(divide(X2,X3),divide(X2,X3))) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_19,c_0_21]),c_0_21]) ).

cnf(c_0_23,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    prove_these_axioms_2 ).

cnf(c_0_24,axiom,
    multiply(X1,X2) = divide(X1,inverse(X2)),
    multiply ).

cnf(c_0_25,plain,
    divide(X1,divide(X2,X2)) = X1,
    inference(spm,[status(thm)],[c_0_22,c_0_22]) ).

cnf(c_0_26,plain,
    divide(X1,inverse(inverse(X2))) = divide(X1,X2),
    inference(spm,[status(thm)],[c_0_20,c_0_20]) ).

cnf(c_0_27,negated_conjecture,
    divide(divide(inverse(b2),inverse(b2)),inverse(a2)) != a2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_23,c_0_24]),c_0_24]) ).

cnf(c_0_28,plain,
    divide(divide(X1,X1),X2) = inverse(X2),
    inference(spm,[status(thm)],[c_0_21,c_0_25]) ).

cnf(c_0_29,plain,
    inverse(inverse(X1)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_9,c_0_26]),c_0_9]) ).

cnf(c_0_30,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_27,c_0_28]),c_0_29])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem    : GRP476-1 : TPTP v8.1.2. Released v2.6.0.
% 0.11/0.12  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.12/0.33  % Computer : n004.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % WCLimit    : 300
% 0.12/0.33  % DateTime   : Mon Aug 28 22:27:22 EDT 2023
% 0.12/0.33  % CPUTime  : 
% 0.18/0.55  start to proof: theBenchmark
% 0.18/0.60  % Version  : CSE_E---1.5
% 0.18/0.60  % Problem  : theBenchmark.p
% 0.18/0.60  % Proof found
% 0.18/0.60  % SZS status Theorem for theBenchmark.p
% 0.18/0.60  % SZS output start Proof
% See solution above
% 0.18/0.61  % Total time : 0.043000 s
% 0.18/0.61  % SZS output end Proof
% 0.18/0.61  % Total time : 0.045000 s
%------------------------------------------------------------------------------