TSTP Solution File: GRP473-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP473-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:05 EDT 2022

% Result   : Unsatisfiable 2.10s 2.32s
% Output   : Refutation 2.10s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   33 (  33 unt;   0 nHn;   5 RR)
%            Number of literals    :   33 (  32 equ;   4 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  109 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP473-1.p',unknown),
    [] ).

cnf(3,axiom,
    divide(divide(inverse(divide(A,B)),divide(divide(C,D),A)),divide(D,C)) = B,
    file('GRP473-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = divide(A,inverse(B)),
    file('GRP473-1.p',unknown),
    [] ).

cnf(6,plain,
    divide(A,inverse(B)) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(7,plain,
    divide(multiply(inverse(b2),b2),inverse(a2)) != a2,
    inference(para_from,[status(thm),theory(equality)],[5,1]),
    [iquote('para_from,5.1.1,1.1.1')] ).

cnf(9,plain,
    divide(divide(inverse(b2),inverse(b2)),inverse(a2)) != a2,
    inference(para_into,[status(thm),theory(equality)],[7,5]),
    [iquote('para_into,7.1.1.1,5.1.1')] ).

cnf(10,plain,
    divide(divide(inverse(multiply(A,B)),divide(divide(C,D),A)),divide(D,C)) = inverse(B),
    inference(para_into,[status(thm),theory(equality)],[3,6]),
    [iquote('para_into,3.1.1.1.1.1,6.1.1')] ).

cnf(13,plain,
    divide(divide(inverse(A),divide(divide(B,C),divide(inverse(divide(D,A)),divide(divide(E,F),D)))),divide(C,B)) = divide(F,E),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.1.1,3.1.1')] ).

cnf(15,plain,
    divide(divide(inverse(divide(A,B)),divide(multiply(C,D),A)),divide(inverse(D),C)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,6]),
    [iquote('para_into,3.1.1.1.2.1,6.1.1')] ).

cnf(20,plain,
    divide(divide(inverse(divide(divide(A,B),C)),D),divide(divide(divide(B,A),E),inverse(divide(E,D)))) = C,
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2,3.1.1')] ).

cnf(22,plain,
    divide(divide(inverse(divide(A,B)),divide(divide(inverse(C),D),A)),multiply(D,C)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,6]),
    [iquote('para_into,3.1.1.2,6.1.1')] ).

cnf(54,plain,
    divide(divide(inverse(inverse(A)),divide(multiply(B,C),divide(inverse(multiply(D,A)),divide(divide(E,F),D)))),divide(inverse(C),B)) = divide(F,E),
    inference(para_into,[status(thm),theory(equality)],[15,10]),
    [iquote('para_into,14.1.1.1.1.1,10.1.1')] ).

cnf(64,plain,
    divide(divide(inverse(divide(A,B)),divide(divide(divide(inverse(C),D),divide(inverse(divide(E,F)),divide(multiply(D,C),E))),A)),F) = B,
    inference(para_from,[status(thm),theory(equality)],[15,3]),
    [iquote('para_from,14.1.1,3.1.1.2')] ).

cnf(132,plain,
    divide(divide(A,B),divide(inverse(C),divide(divide(B,A),divide(inverse(divide(D,C)),divide(divide(E,F),D))))) = divide(E,F),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[13,13]),13])]),
    [iquote('para_into,12.1.1.1.2.2.2.1,12.1.1,demod,13,flip.1')] ).

cnf(191,plain,
    divide(divide(inverse(divide(divide(A,B),C)),inverse(D)),multiply(divide(divide(B,A),E),multiply(E,D))) = C,
    inference(para_into,[status(thm),theory(equality)],[22,10]),
    [iquote('para_into,22.1.1.1.2,10.1.1')] ).

cnf(541,plain,
    divide(multiply(inverse(divide(divide(A,B),C)),D),multiply(divide(divide(B,A),E),multiply(E,D))) = C,
    inference(para_into,[status(thm),theory(equality)],[191,6]),
    [iquote('para_into,191.1.1.1,6.1.1')] ).

cnf(549,plain,
    divide(multiply(inverse(divide(divide(A,B),C)),D),multiply(multiply(divide(B,A),E),multiply(inverse(E),D))) = C,
    inference(para_into,[status(thm),theory(equality)],[541,6]),
    [iquote('para_into,541.1.1.2.1,6.1.1')] ).

cnf(574,plain,
    divide(multiply(inverse(divide(divide(A,B),C)),D),divide(multiply(divide(B,A),E),inverse(multiply(inverse(E),D)))) = C,
    inference(para_into,[status(thm),theory(equality)],[549,5]),
    [iquote('para_into,549.1.1.2,5.1.1')] ).

cnf(575,plain,
    divide(divide(A,B),divide(inverse(C),divide(divide(B,A),divide(inverse(divide(D,C)),divide(E,D))))) = E,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[132,574]),574]),
    [iquote('para_into,132.1.1.2.2.2.2.1,573.1.1,demod,574')] ).

cnf(593,plain,
    divide(divide(inverse(divide(divide(inverse(A),divide(B,divide(inverse(divide(C,A)),divide(D,C)))),E)),D),B) = E,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[575,64]),15]),
    [iquote('para_from,575.1.1,64.1.1.1.2,demod,15')] ).

cnf(719,plain,
    divide(divide(inverse(divide(A,B)),divide(B,A)),divide(C,D)) = divide(D,C),
    inference(para_into,[status(thm),theory(equality)],[593,13]),
    [iquote('para_into,593.1.1.1.1.1,12.1.1')] ).

cnf(731,plain,
    divide(inverse(divide(A,divide(B,divide(C,D)))),divide(divide(D,C),A)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[719,20])]),
    [iquote('para_into,719.1.1,20.1.1,flip.1')] ).

cnf(736,plain,
    divide(divide(A,B),divide(inverse(divide(C,D)),divide(D,C))) = divide(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[719,54]),54])]),
    [iquote('para_from,719.1.1,53.1.1.1.2.2.2.1,demod,54,flip.1')] ).

cnf(742,plain,
    divide(inverse(divide(divide(A,B),C)),divide(B,A)) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[731,719]),736]),
    [iquote('para_into,731.1.1.1.1,719.1.1,demod,736')] ).

cnf(744,plain,
    divide(A,divide(divide(B,C),inverse(divide(C,B)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[731,719]),742]),
    [iquote('para_into,731.1.1.2,719.1.1,demod,742')] ).

cnf(754,plain,
    inverse(divide(A,B)) = divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[742,719]),744]),
    [iquote('para_into,741.1.1.1.1,719.1.1,demod,744')] ).

cnf(790,plain,
    divide(A,divide(divide(B,C),divide(B,C))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[744]),754]),
    [iquote('back_demod,743,demod,754')] ).

cnf(862,plain,
    divide(A,divide(B,B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[790,790]),790]),
    [iquote('para_into,789.1.1.2.1,789.1.1,demod,790')] ).

cnf(869,plain,
    inverse(A) = divide(divide(B,B),A),
    inference(para_from,[status(thm),theory(equality)],[862,754]),
    [iquote('para_from,861.1.1,753.1.1.1')] ).

cnf(870,plain,
    divide(divide(A,A),B) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[869])]),
    [iquote('copy,869,flip.1')] ).

cnf(889,plain,
    inverse(inverse(a2)) != a2,
    inference(para_from,[status(thm),theory(equality)],[870,9]),
    [iquote('para_from,870.1.1,9.1.1')] ).

cnf(890,plain,
    inverse(inverse(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[870,754]),862]),
    [iquote('para_from,870.1.1,753.1.1.1,demod,862')] ).

cnf(892,plain,
    $false,
    inference(binary,[status(thm)],[890,889]),
    [iquote('binary,890.1,889.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP473-1 : TPTP v8.1.0. Released v2.6.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n009.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:08:51 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 2.10/2.32  ----- Otter 3.3f, August 2004 -----
% 2.10/2.32  The process was started by sandbox2 on n009.cluster.edu,
% 2.10/2.32  Wed Jul 27 05:08:51 2022
% 2.10/2.32  The command was "./otter".  The process ID is 982.
% 2.10/2.32  
% 2.10/2.32  set(prolog_style_variables).
% 2.10/2.32  set(auto).
% 2.10/2.32     dependent: set(auto1).
% 2.10/2.32     dependent: set(process_input).
% 2.10/2.32     dependent: clear(print_kept).
% 2.10/2.32     dependent: clear(print_new_demod).
% 2.10/2.32     dependent: clear(print_back_demod).
% 2.10/2.32     dependent: clear(print_back_sub).
% 2.10/2.32     dependent: set(control_memory).
% 2.10/2.32     dependent: assign(max_mem, 12000).
% 2.10/2.32     dependent: assign(pick_given_ratio, 4).
% 2.10/2.32     dependent: assign(stats_level, 1).
% 2.10/2.32     dependent: assign(max_seconds, 10800).
% 2.10/2.32  clear(print_given).
% 2.10/2.32  
% 2.10/2.32  list(usable).
% 2.10/2.32  0 [] A=A.
% 2.10/2.32  0 [] divide(divide(inverse(divide(A,B)),divide(divide(C,D),A)),divide(D,C))=B.
% 2.10/2.32  0 [] multiply(A,B)=divide(A,inverse(B)).
% 2.10/2.32  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 2.10/2.32  end_of_list.
% 2.10/2.32  
% 2.10/2.32  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 2.10/2.32  
% 2.10/2.32  All clauses are units, and equality is present; the
% 2.10/2.32  strategy will be Knuth-Bendix with positive clauses in sos.
% 2.10/2.32  
% 2.10/2.32     dependent: set(knuth_bendix).
% 2.10/2.32     dependent: set(anl_eq).
% 2.10/2.32     dependent: set(para_from).
% 2.10/2.32     dependent: set(para_into).
% 2.10/2.32     dependent: clear(para_from_right).
% 2.10/2.32     dependent: clear(para_into_right).
% 2.10/2.32     dependent: set(para_from_vars).
% 2.10/2.32     dependent: set(eq_units_both_ways).
% 2.10/2.32     dependent: set(dynamic_demod_all).
% 2.10/2.32     dependent: set(dynamic_demod).
% 2.10/2.32     dependent: set(order_eq).
% 2.10/2.32     dependent: set(back_demod).
% 2.10/2.32     dependent: set(lrpo).
% 2.10/2.32  
% 2.10/2.32  ------------> process usable:
% 2.10/2.32  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 2.10/2.32  
% 2.10/2.32  ------------> process sos:
% 2.10/2.32  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.10/2.32  ** KEPT (pick-wt=16): 3 [] divide(divide(inverse(divide(A,B)),divide(divide(C,D),A)),divide(D,C))=B.
% 2.10/2.32  ---> New Demodulator: 4 [new_demod,3] divide(divide(inverse(divide(A,B)),divide(divide(C,D),A)),divide(D,C))=B.
% 2.10/2.32  ** KEPT (pick-wt=8): 5 [] multiply(A,B)=divide(A,inverse(B)).
% 2.10/2.32    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.10/2.32  >>>> Starting back demodulation with 4.
% 2.10/2.32  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] divide(A,inverse(B))=multiply(A,B).
% 2.10/2.32    Following clause subsumed by 5 during input processing: 0 [copy,6,flip.1] multiply(A,B)=divide(A,inverse(B)).
% 2.10/2.32  
% 2.10/2.32  ======= end of input processing =======
% 2.10/2.32  
% 2.10/2.32  =========== start of search ===========
% 2.10/2.32  
% 2.10/2.32  
% 2.10/2.32  Resetting weight limit to 22.
% 2.10/2.32  
% 2.10/2.32  
% 2.10/2.32  Resetting weight limit to 22.
% 2.10/2.32  
% 2.10/2.32  sos_size=274
% 2.10/2.32  
% 2.10/2.32  
% 2.10/2.32  Resetting weight limit to 17.
% 2.10/2.32  
% 2.10/2.32  
% 2.10/2.32  Resetting weight limit to 17.
% 2.10/2.32  
% 2.10/2.32  sos_size=286
% 2.10/2.32  
% 2.10/2.32  
% 2.10/2.32  Resetting weight limit to 11.
% 2.10/2.32  
% 2.10/2.32  
% 2.10/2.32  Resetting weight limit to 11.
% 2.10/2.32  
% 2.10/2.32  sos_size=51
% 2.10/2.32  
% 2.10/2.32  -------- PROOF -------- 
% 2.10/2.32  
% 2.10/2.32  ----> UNIT CONFLICT at   0.42 sec ----> 892 [binary,890.1,889.1] $F.
% 2.10/2.32  
% 2.10/2.32  Length of proof is 29.  Level of proof is 18.
% 2.10/2.32  
% 2.10/2.32  ---------------- PROOF ----------------
% 2.10/2.32  % SZS status Unsatisfiable
% 2.10/2.32  % SZS output start Refutation
% See solution above
% 2.10/2.33  ------------ end of proof -------------
% 2.10/2.33  
% 2.10/2.33  
% 2.10/2.33  Search stopped by max_proofs option.
% 2.10/2.33  
% 2.10/2.33  
% 2.10/2.33  Search stopped by max_proofs option.
% 2.10/2.33  
% 2.10/2.33  ============ end of search ============
% 2.10/2.33  
% 2.10/2.33  -------------- statistics -------------
% 2.10/2.33  clauses given                184
% 2.10/2.33  clauses generated          52718
% 2.10/2.33  clauses kept                 533
% 2.10/2.33  clauses forward subsumed    2498
% 2.10/2.33  clauses back subsumed          3
% 2.10/2.33  Kbytes malloced             8789
% 2.10/2.33  
% 2.10/2.33  ----------- times (seconds) -----------
% 2.10/2.33  user CPU time          0.42          (0 hr, 0 min, 0 sec)
% 2.10/2.33  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.10/2.33  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.10/2.33  
% 2.10/2.33  That finishes the proof of the theorem.
% 2.10/2.33  
% 2.10/2.33  Process 982 finished Wed Jul 27 05:08:53 2022
% 2.10/2.33  Otter interrupted
% 2.10/2.33  PROOF FOUND
%------------------------------------------------------------------------------