TSTP Solution File: GRP470-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP470-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:20:26 EDT 2023

% Result   : Unsatisfiable 0.90s 0.95s
% Output   : CNFRefutation 0.90s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   30
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   56 (  51 unt;   5 typ;   0 def)
%            Number of atoms       :   51 (  50 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    3 (   3   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  171 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    divide: ( $i * $i ) > $i ).

tff(decl_23,type,
    inverse: $i > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    b2: $i ).

tff(decl_26,type,
    a2: $i ).

cnf(single_axiom,axiom,
    divide(inverse(divide(X1,divide(X2,divide(X3,X4)))),divide(divide(X4,X3),X1)) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_2,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_2) ).

cnf(multiply,axiom,
    multiply(X1,X2) = divide(X1,inverse(X2)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_0_3,axiom,
    divide(inverse(divide(X1,divide(X2,divide(X3,X4)))),divide(divide(X4,X3),X1)) = X2,
    single_axiom ).

cnf(c_0_4,plain,
    divide(inverse(divide(X1,X2)),divide(divide(X3,divide(X4,X5)),X1)) = inverse(divide(X3,divide(X2,divide(X5,X4)))),
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_5,plain,
    inverse(divide(X1,divide(divide(X2,divide(divide(X3,X4),X1)),divide(X4,X3)))) = X2,
    inference(spm,[status(thm)],[c_0_3,c_0_4]) ).

cnf(c_0_6,plain,
    divide(inverse(X1),divide(divide(X2,X3),inverse(divide(divide(X3,X2),divide(X1,divide(X4,X5)))))) = divide(X5,X4),
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_7,plain,
    inverse(inverse(divide(X1,divide(X2,divide(inverse(divide(divide(X3,X4),X2)),divide(X4,X3)))))) = X1,
    inference(spm,[status(thm)],[c_0_5,c_0_4]) ).

cnf(c_0_8,plain,
    divide(divide(divide(X1,X2),inverse(divide(divide(X2,X1),divide(X3,divide(X4,X5))))),inverse(X3)) = divide(X4,X5),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_6,c_0_6]),c_0_6]) ).

cnf(c_0_9,plain,
    divide(inverse(divide(X1,divide(X2,divide(divide(divide(X3,X4),X5),inverse(divide(X5,divide(X6,divide(X4,X3)))))))),divide(X6,X1)) = X2,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_10,plain,
    inverse(divide(divide(inverse(divide(divide(X1,X2),divide(X3,X4))),divide(X2,X1)),divide(X5,divide(X4,X3)))) = inverse(inverse(X5)),
    inference(spm,[status(thm)],[c_0_7,c_0_3]) ).

cnf(c_0_11,plain,
    divide(divide(divide(X1,X2),inverse(divide(divide(X2,X1),divide(X3,X4)))),inverse(X3)) = X4,
    inference(spm,[status(thm)],[c_0_8,c_0_3]) ).

cnf(c_0_12,plain,
    divide(inverse(divide(X1,divide(X2,X3))),divide(divide(divide(divide(X4,X5),X6),inverse(divide(X6,divide(X3,divide(X5,X4))))),X1)) = X2,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_13,plain,
    divide(inverse(inverse(X1)),divide(X2,divide(inverse(divide(divide(X3,X4),X2)),divide(X4,X3)))) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_9,c_0_10]),c_0_3]) ).

cnf(c_0_14,plain,
    divide(divide(divide(X1,X2),X3),inverse(divide(X3,divide(divide(X4,X5),divide(X2,X1))))) = divide(X5,X4),
    inference(spm,[status(thm)],[c_0_11,c_0_5]) ).

cnf(c_0_15,plain,
    divide(inverse(X1),divide(divide(divide(X2,X3),inverse(divide(divide(X3,X2),X4))),inverse(inverse(X1)))) = X4,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_12,c_0_13]),c_0_14]) ).

cnf(c_0_16,plain,
    divide(X1,divide(divide(divide(X2,X3),inverse(divide(divide(X3,X2),X4))),inverse(X1))) = X4,
    inference(spm,[status(thm)],[c_0_15,c_0_7]) ).

cnf(c_0_17,plain,
    divide(divide(divide(X1,X2),inverse(X3)),inverse(divide(divide(X4,X5),inverse(divide(divide(X5,X4),X3))))) = inverse(divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_11,c_0_16]) ).

cnf(c_0_18,plain,
    divide(X1,divide(inverse(divide(X2,X3)),inverse(X1))) = inverse(divide(divide(divide(X3,X2),inverse(X4)),X4)),
    inference(spm,[status(thm)],[c_0_16,c_0_17]) ).

cnf(c_0_19,plain,
    divide(X1,divide(inverse(divide(X2,X3)),inverse(X1))) = divide(X4,divide(inverse(divide(X2,X3)),inverse(X4))),
    inference(spm,[status(thm)],[c_0_18,c_0_18]) ).

cnf(c_0_20,plain,
    inverse(divide(inverse(X1),divide(divide(X2,X3),divide(inverse(divide(divide(X4,X5),divide(X1,X3))),divide(X5,X4))))) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_3,c_0_11]),c_0_4]) ).

cnf(c_0_21,plain,
    divide(X1,divide(X2,inverse(X1))) = divide(X3,divide(X2,inverse(X3))),
    inference(spm,[status(thm)],[c_0_19,c_0_20]) ).

cnf(c_0_22,plain,
    inverse(divide(X1,divide(divide(X2,divide(divide(X3,inverse(X4)),X4)),divide(inverse(X1),X3)))) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_3,c_0_21]),c_0_4]) ).

cnf(c_0_23,plain,
    divide(divide(X1,X2),divide(X3,divide(divide(divide(X2,X1),inverse(X4)),X4))) = inverse(X3),
    inference(spm,[status(thm)],[c_0_7,c_0_22]) ).

cnf(c_0_24,plain,
    inverse(inverse(divide(X1,divide(X2,divide(inverse(X1),divide(X3,X4)))))) = divide(divide(X4,X3),X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_9]),c_0_14]) ).

cnf(c_0_25,plain,
    inverse(divide(inverse(X1),divide(X2,divide(inverse(divide(divide(X3,X4),X2)),divide(X4,X3))))) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_12,c_0_16]),c_0_14]),c_0_4]) ).

cnf(c_0_26,plain,
    divide(divide(divide(X1,X2),inverse(divide(divide(X2,X1),inverse(X3)))),inverse(inverse(X4))) = inverse(inverse(divide(X3,X4))),
    inference(spm,[status(thm)],[c_0_24,c_0_13]) ).

cnf(c_0_27,plain,
    divide(divide(divide(divide(X1,X2),inverse(divide(divide(X2,X1),divide(X3,X4)))),inverse(X5)),X5) = divide(X4,X3),
    inference(spm,[status(thm)],[c_0_14,c_0_25]) ).

cnf(c_0_28,plain,
    divide(inverse(X1),inverse(inverse(divide(X2,X1)))) = inverse(X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_26]),c_0_16]) ).

cnf(c_0_29,plain,
    divide(divide(X1,inverse(X2)),X2) = divide(divide(X1,inverse(X3)),X3),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_21]),c_0_27]) ).

cnf(c_0_30,plain,
    divide(inverse(X1),inverse(inverse(divide(divide(X2,inverse(X3)),X3)))) = inverse(divide(X2,inverse(X1))),
    inference(spm,[status(thm)],[c_0_28,c_0_29]) ).

cnf(c_0_31,plain,
    divide(X1,inverse(inverse(divide(divide(X2,inverse(X3)),X3)))) = inverse(divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_30,c_0_7]) ).

cnf(c_0_32,plain,
    divide(X1,inverse(divide(X2,divide(inverse(divide(X3,X4)),inverse(X2))))) = inverse(divide(divide(X4,X3),X1)),
    inference(spm,[status(thm)],[c_0_31,c_0_18]) ).

cnf(c_0_33,plain,
    divide(inverse(divide(divide(X1,X2),X3)),inverse(inverse(X4))) = inverse(inverse(divide(X3,divide(X4,divide(X2,X1))))),
    inference(spm,[status(thm)],[c_0_28,c_0_3]) ).

cnf(c_0_34,plain,
    divide(inverse(divide(X1,inverse(X2))),inverse(inverse(divide(X3,divide(X1,inverse(X3)))))) = inverse(X2),
    inference(spm,[status(thm)],[c_0_28,c_0_21]) ).

cnf(c_0_35,plain,
    inverse(inverse(divide(divide(X1,X2),divide(divide(X3,X4),divide(X3,X4))))) = inverse(divide(X2,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_11,c_0_32]),c_0_33]) ).

cnf(c_0_36,plain,
    divide(inverse(divide(X1,X2)),inverse(inverse(divide(X3,divide(X1,inverse(X3)))))) = X2,
    inference(spm,[status(thm)],[c_0_34,c_0_7]) ).

cnf(c_0_37,plain,
    inverse(inverse(divide(divide(X1,X2),divide(X3,X3)))) = inverse(divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_35,c_0_36]) ).

cnf(c_0_38,plain,
    inverse(divide(divide(X1,X2),divide(X3,X3))) = divide(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_37]),c_0_13]) ).

cnf(c_0_39,plain,
    inverse(divide(divide(X1,X2),X3)) = divide(X3,divide(X1,X2)),
    inference(spm,[status(thm)],[c_0_32,c_0_38]) ).

cnf(c_0_40,plain,
    inverse(divide(X1,X2)) = divide(X2,X1),
    inference(spm,[status(thm)],[c_0_39,c_0_36]) ).

cnf(c_0_41,plain,
    divide(divide(X1,X2),inverse(X2)) = inverse(inverse(X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_28]),c_0_40]),c_0_40]) ).

cnf(c_0_42,plain,
    divide(inverse(X1),divide(X2,X1)) = inverse(X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_28,c_0_40]),c_0_40]) ).

cnf(c_0_43,plain,
    inverse(inverse(X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_11,c_0_41]),c_0_42]),c_0_40]),c_0_42]),c_0_40]),c_0_41]) ).

cnf(c_0_44,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    prove_these_axioms_2 ).

cnf(c_0_45,axiom,
    multiply(X1,X2) = divide(X1,inverse(X2)),
    multiply ).

cnf(c_0_46,plain,
    divide(X1,divide(X2,inverse(X1))) = inverse(X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_43]),c_0_42]) ).

cnf(c_0_47,plain,
    divide(divide(X1,X1),divide(X2,X3)) = divide(X3,X2),
    inference(rw,[status(thm)],[c_0_38,c_0_39]) ).

cnf(c_0_48,negated_conjecture,
    divide(divide(inverse(b2),inverse(b2)),inverse(a2)) != a2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_44,c_0_45]),c_0_45]) ).

cnf(c_0_49,plain,
    divide(divide(X1,X1),X2) = inverse(X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_47]),c_0_40]) ).

cnf(c_0_50,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_48,c_0_49]),c_0_43])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : GRP470-1 : TPTP v8.1.2. Released v2.6.0.
% 0.00/0.12  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.16/0.33  % Computer : n019.cluster.edu
% 0.16/0.33  % Model    : x86_64 x86_64
% 0.16/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.16/0.33  % Memory   : 8042.1875MB
% 0.16/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.16/0.33  % CPULimit   : 300
% 0.16/0.33  % WCLimit    : 300
% 0.16/0.33  % DateTime   : Mon Aug 28 19:48:58 EDT 2023
% 0.16/0.33  % CPUTime  : 
% 0.18/0.60  start to proof: theBenchmark
% 0.90/0.95  % Version  : CSE_E---1.5
% 0.90/0.95  % Problem  : theBenchmark.p
% 0.90/0.95  % Proof found
% 0.90/0.95  % SZS status Theorem for theBenchmark.p
% 0.90/0.95  % SZS output start Proof
% See solution above
% 0.90/0.96  % Total time : 0.343000 s
% 0.90/0.96  % SZS output end Proof
% 0.90/0.96  % Total time : 0.346000 s
%------------------------------------------------------------------------------