TSTP Solution File: GRP459-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP459-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:07 EDT 2022

% Result   : Unsatisfiable 0.72s 1.12s
% Output   : Refutation 0.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP459-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n009.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Mon Jun 13 04:41:38 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.72/1.12  *** allocated 10000 integers for termspace/termends
% 0.72/1.12  *** allocated 10000 integers for clauses
% 0.72/1.12  *** allocated 10000 integers for justifications
% 0.72/1.12  Bliksem 1.12
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Automatic Strategy Selection
% 0.72/1.12  
% 0.72/1.12  Clauses:
% 0.72/1.12  [
% 0.72/1.12     [ =( divide( divide( divide( X, X ), divide( X, divide( Y, divide( 
% 0.72/1.12    divide( identity, X ), Z ) ) ) ), Z ), Y ) ],
% 0.72/1.12     [ =( multiply( X, Y ), divide( X, divide( identity, Y ) ) ) ],
% 0.72/1.12     [ =( inverse( X ), divide( identity, X ) ) ],
% 0.72/1.12     [ =( identity, divide( X, X ) ) ],
% 0.72/1.12     [ ~( =( multiply( multiply( a3, b3 ), c3 ), multiply( a3, multiply( b3, 
% 0.72/1.12    c3 ) ) ) ) ]
% 0.72/1.12  ] .
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  percentage equality = 1.000000, percentage horn = 1.000000
% 0.72/1.12  This is a pure equality problem
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Options Used:
% 0.72/1.12  
% 0.72/1.12  useres =            1
% 0.72/1.12  useparamod =        1
% 0.72/1.12  useeqrefl =         1
% 0.72/1.12  useeqfact =         1
% 0.72/1.12  usefactor =         1
% 0.72/1.12  usesimpsplitting =  0
% 0.72/1.12  usesimpdemod =      5
% 0.72/1.12  usesimpres =        3
% 0.72/1.12  
% 0.72/1.12  resimpinuse      =  1000
% 0.72/1.12  resimpclauses =     20000
% 0.72/1.12  substype =          eqrewr
% 0.72/1.12  backwardsubs =      1
% 0.72/1.12  selectoldest =      5
% 0.72/1.12  
% 0.72/1.12  litorderings [0] =  split
% 0.72/1.12  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.72/1.12  
% 0.72/1.12  termordering =      kbo
% 0.72/1.12  
% 0.72/1.12  litapriori =        0
% 0.72/1.12  termapriori =       1
% 0.72/1.12  litaposteriori =    0
% 0.72/1.12  termaposteriori =   0
% 0.72/1.12  demodaposteriori =  0
% 0.72/1.12  ordereqreflfact =   0
% 0.72/1.12  
% 0.72/1.12  litselect =         negord
% 0.72/1.12  
% 0.72/1.12  maxweight =         15
% 0.72/1.12  maxdepth =          30000
% 0.72/1.12  maxlength =         115
% 0.72/1.12  maxnrvars =         195
% 0.72/1.12  excuselevel =       1
% 0.72/1.12  increasemaxweight = 1
% 0.72/1.12  
% 0.72/1.12  maxselected =       10000000
% 0.72/1.12  maxnrclauses =      10000000
% 0.72/1.12  
% 0.72/1.12  showgenerated =    0
% 0.72/1.12  showkept =         0
% 0.72/1.12  showselected =     0
% 0.72/1.12  showdeleted =      0
% 0.72/1.12  showresimp =       1
% 0.72/1.12  showstatus =       2000
% 0.72/1.12  
% 0.72/1.12  prologoutput =     1
% 0.72/1.12  nrgoals =          5000000
% 0.72/1.12  totalproof =       1
% 0.72/1.12  
% 0.72/1.12  Symbols occurring in the translation:
% 0.72/1.12  
% 0.72/1.12  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.72/1.12  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.72/1.12  !  [4, 1]      (w:0, o:16, a:1, s:1, b:0), 
% 0.72/1.12  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.12  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.12  divide  [40, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.72/1.12  identity  [42, 0]      (w:1, o:11, a:1, s:1, b:0), 
% 0.72/1.12  multiply  [44, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.72/1.12  inverse  [45, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.72/1.12  a3  [46, 0]      (w:1, o:13, a:1, s:1, b:0), 
% 0.72/1.12  b3  [47, 0]      (w:1, o:14, a:1, s:1, b:0), 
% 0.72/1.12  c3  [48, 0]      (w:1, o:15, a:1, s:1, b:0).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Starting Search:
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Bliksems!, er is een bewijs:
% 0.72/1.12  % SZS status Unsatisfiable
% 0.72/1.12  % SZS output start Refutation
% 0.72/1.12  
% 0.72/1.12  clause( 0, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.72/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 1, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 4, [ ~( =( multiply( a3, multiply( b3, c3 ) ), multiply( multiply( 
% 0.72/1.12    a3, b3 ), c3 ) ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 7, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 10, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X
% 0.72/1.12     ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 12, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X ) ]
% 0.72/1.12     )
% 0.72/1.12  .
% 0.72/1.12  clause( 15, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) ), X
% 0.72/1.12     ), Y ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 19, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 32, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 42, [ =( divide( X, identity ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 43, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 46, [ =( multiply( Y, inverse( X ) ), divide( Y, X ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 48, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 56, [ =( multiply( inverse( X ), multiply( X, Y ) ), Y ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 58, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 60, [ =( divide( Y, multiply( X, Y ) ), inverse( X ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 63, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 74, [ =( multiply( Z, divide( X, Y ) ), divide( Z, divide( Y, X ) )
% 0.72/1.12     ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 75, [ =( divide( inverse( Y ), X ), inverse( multiply( X, Y ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  .
% 0.72/1.12  clause( 76, [ =( multiply( inverse( multiply( Y, X ) ), Y ), inverse( X ) )
% 0.72/1.12     ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 89, [ =( divide( divide( X, divide( Y, Z ) ), divide( Z, Y ) ), X )
% 0.72/1.12     ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 90, [ =( divide( X, multiply( Y, Z ) ), divide( divide( X, Z ), Y )
% 0.72/1.12     ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 97, [ =( multiply( divide( Z, X ), multiply( X, Y ) ), multiply( Z
% 0.72/1.12    , Y ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 99, [ =( divide( Z, divide( X, Y ) ), divide( multiply( Z, Y ), X )
% 0.72/1.12     ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 100, [ =( multiply( T, multiply( Y, Z ) ), multiply( multiply( T, Y
% 0.72/1.12     ), Z ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 101, [] )
% 0.72/1.12  .
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  % SZS output end Refutation
% 0.72/1.12  found a proof!
% 0.72/1.12  
% 0.72/1.12  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.12  
% 0.72/1.12  initialclauses(
% 0.72/1.12  [ clause( 103, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.72/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , clause( 104, [ =( multiply( X, Y ), divide( X, divide( identity, Y ) ) )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 105, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.72/1.12  , clause( 106, [ =( identity, divide( X, X ) ) ] )
% 0.72/1.12  , clause( 107, [ ~( =( multiply( multiply( a3, b3 ), c3 ), multiply( a3, 
% 0.72/1.12    multiply( b3, c3 ) ) ) ) ] )
% 0.72/1.12  ] ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 0, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.72/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , clause( 103, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.72/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 110, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 104, [ =( multiply( X, Y ), divide( X, divide( identity, Y ) ) )
% 0.72/1.12     ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 1, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , clause( 110, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) )
% 0.72/1.12     ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 113, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , clause( 105, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , clause( 113, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 117, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , clause( 106, [ =( identity, divide( X, X ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , clause( 117, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 122, [ ~( =( multiply( a3, multiply( b3, c3 ) ), multiply( multiply( 
% 0.72/1.12    a3, b3 ), c3 ) ) ) ] )
% 0.72/1.12  , clause( 107, [ ~( =( multiply( multiply( a3, b3 ), c3 ), multiply( a3, 
% 0.72/1.12    multiply( b3, c3 ) ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 4, [ ~( =( multiply( a3, multiply( b3, c3 ) ), multiply( multiply( 
% 0.72/1.12    a3, b3 ), c3 ) ) ) ] )
% 0.72/1.12  , clause( 122, [ ~( =( multiply( a3, multiply( b3, c3 ) ), multiply( 
% 0.72/1.12    multiply( a3, b3 ), c3 ) ) ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 123, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 125, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , 0, clause( 123, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.12    identity )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  , clause( 125, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 129, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 1, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) )
% 0.72/1.12     ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , clause( 129, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 132, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 133, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.72/1.12  , clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  , 0, clause( 132, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , 0, 6, substitution( 0, [] ), substitution( 1, [ :=( X, X ), :=( Y, 
% 0.72/1.12    identity )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 7, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.72/1.12  , clause( 133, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 135, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 137, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 135, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, identity ), :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.12  , clause( 137, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 143, [ =( divide( divide( identity, divide( X, divide( Y, divide( 
% 0.72/1.12    divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , 0, clause( 0, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.72/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 145, [ =( divide( divide( identity, divide( X, divide( Y, divide( 
% 0.72/1.12    inverse( X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 143, [ =( divide( divide( identity, divide( X, divide( Y, 
% 0.72/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , 0, 9, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 147, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X
% 0.72/1.12     ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 145, [ =( divide( divide( identity, divide( X, divide( Y, 
% 0.72/1.12    divide( inverse( X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , 0, 2, substitution( 0, [ :=( X, divide( X, divide( Y, divide( inverse( X
% 0.72/1.12     ), Z ) ) ) )] ), substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )
% 0.72/1.12    ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 10, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X
% 0.72/1.12     ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , clause( 147, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 150, [ =( Y, divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ) ) ] )
% 0.72/1.12  , clause( 10, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 154, [ =( X, divide( inverse( divide( identity, divide( X, divide( 
% 0.72/1.12    identity, Y ) ) ) ), Y ) ) ] )
% 0.72/1.12  , clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  , 0, clause( 150, [ =( Y, divide( inverse( divide( X, divide( Y, divide( 
% 0.72/1.12    inverse( X ), Z ) ) ) ), Z ) ) ] )
% 0.72/1.12  , 0, 9, substitution( 0, [] ), substitution( 1, [ :=( X, identity ), :=( Y
% 0.72/1.12    , X ), :=( Z, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 156, [ =( X, divide( inverse( divide( identity, divide( X, inverse( 
% 0.72/1.12    Y ) ) ) ), Y ) ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 154, [ =( X, divide( inverse( divide( identity, divide( X, 
% 0.72/1.12    divide( identity, Y ) ) ) ), Y ) ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 158, [ =( X, divide( inverse( inverse( divide( X, inverse( Y ) ) )
% 0.72/1.12     ), Y ) ) ] )
% 0.72/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 156, [ =( X, divide( inverse( divide( identity, divide( X, 
% 0.72/1.12    inverse( Y ) ) ) ), Y ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, divide( X, inverse( Y ) ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 159, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y ) )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 158, [ =( X, divide( inverse( inverse( divide( X, inverse( Y )
% 0.72/1.12     ) ) ), Y ) ) ] )
% 0.72/1.12  , 0, 5, substitution( 0, [ :=( X, X ), :=( Y, Y )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 160, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 159, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y )
% 0.72/1.12     ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 12, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 160, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 162, [ =( Y, divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ) ) ] )
% 0.72/1.12  , clause( 10, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 165, [ =( X, divide( inverse( divide( Y, divide( X, identity ) ) )
% 0.72/1.12    , inverse( Y ) ) ) ] )
% 0.72/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , 0, clause( 162, [ =( Y, divide( inverse( divide( X, divide( Y, divide( 
% 0.72/1.12    inverse( X ), Z ) ) ) ), Z ) ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, inverse( Y ) )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, Y ), :=( Y, X ), :=( Z, inverse( Y ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 166, [ =( X, multiply( inverse( divide( Y, divide( X, identity ) )
% 0.72/1.12     ), Y ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 165, [ =( X, divide( inverse( divide( Y, divide( X, identity )
% 0.72/1.12     ) ), inverse( Y ) ) ) ] )
% 0.72/1.12  , 0, 2, substitution( 0, [ :=( X, inverse( divide( Y, divide( X, identity )
% 0.72/1.12     ) ) ), :=( Y, Y )] ), substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 167, [ =( multiply( inverse( divide( Y, divide( X, identity ) ) ), 
% 0.72/1.12    Y ), X ) ] )
% 0.72/1.12  , clause( 166, [ =( X, multiply( inverse( divide( Y, divide( X, identity )
% 0.72/1.12     ) ), Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 15, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) ), X
% 0.72/1.12     ), Y ) ] )
% 0.72/1.12  , clause( 167, [ =( multiply( inverse( divide( Y, divide( X, identity ) ) )
% 0.72/1.12    , Y ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 169, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y ) )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 12, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X )
% 0.72/1.12     ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 172, [ =( X, divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ) ) ] )
% 0.72/1.12  , clause( 7, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.72/1.12  , 0, clause( 169, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, identity )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 173, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ), X ) ] )
% 0.72/1.12  , clause( 172, [ =( X, divide( inverse( inverse( divide( X, identity ) ) )
% 0.72/1.12    , identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 19, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ), X ) ] )
% 0.72/1.12  , clause( 173, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 175, [ =( Y, multiply( inverse( divide( X, divide( Y, identity ) )
% 0.72/1.12     ), X ) ) ] )
% 0.72/1.12  , clause( 15, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) )
% 0.72/1.12    , X ), Y ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 178, [ =( X, multiply( inverse( identity ), divide( X, identity ) )
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.72/1.12  , 0, clause( 175, [ =( Y, multiply( inverse( divide( X, divide( Y, identity
% 0.72/1.12     ) ) ), X ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, divide( X, identity ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, divide( X, identity ) ), :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 180, [ =( X, multiply( identity, divide( X, identity ) ) ) ] )
% 0.72/1.12  , clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.72/1.12  , 0, clause( 178, [ =( X, multiply( inverse( identity ), divide( X, 
% 0.72/1.12    identity ) ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [] ), substitution( 1, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 181, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ] )
% 0.72/1.12  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.72/1.12  , 0, clause( 180, [ =( X, multiply( identity, divide( X, identity ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, 2, substitution( 0, [ :=( X, divide( X, identity ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 182, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , clause( 181, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 32, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , clause( 182, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 184, [ =( X, divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ) ) ] )
% 0.72/1.12  , clause( 19, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 187, [ =( X, divide( X, identity ) ) ] )
% 0.72/1.12  , clause( 32, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , 0, clause( 184, [ =( X, divide( inverse( inverse( divide( X, identity ) )
% 0.72/1.12     ), identity ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.72/1.12    ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 188, [ =( divide( X, identity ), X ) ] )
% 0.72/1.12  , clause( 187, [ =( X, divide( X, identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 42, [ =( divide( X, identity ), X ) ] )
% 0.72/1.12  , clause( 188, [ =( divide( X, identity ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 190, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ] )
% 0.72/1.12  , clause( 32, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 193, [ =( inverse( inverse( divide( X, identity ) ) ), inverse( 
% 0.72/1.12    inverse( X ) ) ) ] )
% 0.72/1.12  , clause( 19, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.72/1.12    identity ), X ) ] )
% 0.72/1.12  , 0, clause( 190, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, inverse( 
% 0.72/1.12    inverse( divide( X, identity ) ) ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 194, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.72/1.12  , clause( 32, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , 0, clause( 193, [ =( inverse( inverse( divide( X, identity ) ) ), inverse( 
% 0.72/1.12    inverse( X ) ) ) ] )
% 0.72/1.12  , 0, 1, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.72/1.12    ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 195, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.12  , clause( 194, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 43, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.12  , clause( 195, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 197, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 199, [ =( multiply( X, inverse( divide( Y, identity ) ) ), divide( 
% 0.72/1.12    X, Y ) ) ] )
% 0.72/1.12  , clause( 32, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.72/1.12  , 0, clause( 197, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , 0, 9, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, inverse( divide( Y, identity ) ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 200, [ =( multiply( X, inverse( Y ) ), divide( X, Y ) ) ] )
% 0.72/1.12  , clause( 42, [ =( divide( X, identity ), X ) ] )
% 0.72/1.12  , 0, clause( 199, [ =( multiply( X, inverse( divide( Y, identity ) ) ), 
% 0.72/1.12    divide( X, Y ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 46, [ =( multiply( Y, inverse( X ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , clause( 200, [ =( multiply( X, inverse( Y ) ), divide( X, Y ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 203, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y ) )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 12, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X )
% 0.72/1.12     ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 204, [ =( X, divide( multiply( X, Y ), Y ) ) ] )
% 0.72/1.12  , clause( 43, [ =( inverse( inverse( X ) ), X ) ] )
% 0.72/1.12  , 0, clause( 203, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, multiply( X, Y ) )] ), substitution( 1, [
% 0.72/1.12     :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 205, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  , clause( 204, [ =( X, divide( multiply( X, Y ), Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 48, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  , clause( 205, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 207, [ =( Y, multiply( inverse( divide( X, divide( Y, identity ) )
% 0.72/1.12     ), X ) ) ] )
% 0.72/1.12  , clause( 15, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) )
% 0.72/1.12    , X ), Y ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 212, [ =( X, multiply( inverse( Y ), multiply( Y, divide( X, 
% 0.72/1.12    identity ) ) ) ) ] )
% 0.72/1.12  , clause( 48, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  , 0, clause( 207, [ =( Y, multiply( inverse( divide( X, divide( Y, identity
% 0.72/1.12     ) ) ), X ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, Y ), :=( Y, divide( X, identity ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, multiply( Y, divide( X, identity ) ) ), :=( Y, 
% 0.72/1.12    X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 214, [ =( X, multiply( inverse( Y ), multiply( Y, X ) ) ) ] )
% 0.72/1.12  , clause( 42, [ =( divide( X, identity ), X ) ] )
% 0.72/1.12  , 0, clause( 212, [ =( X, multiply( inverse( Y ), multiply( Y, divide( X, 
% 0.72/1.12    identity ) ) ) ) ] )
% 0.72/1.12  , 0, 7, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 215, [ =( multiply( inverse( Y ), multiply( Y, X ) ), X ) ] )
% 0.72/1.12  , clause( 214, [ =( X, multiply( inverse( Y ), multiply( Y, X ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 56, [ =( multiply( inverse( X ), multiply( X, Y ) ), Y ) ] )
% 0.72/1.12  , clause( 215, [ =( multiply( inverse( Y ), multiply( Y, X ) ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 216, [ =( X, divide( multiply( X, Y ), Y ) ) ] )
% 0.72/1.12  , clause( 48, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 219, [ =( X, multiply( multiply( X, inverse( Y ) ), Y ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 216, [ =( X, divide( multiply( X, Y ), Y ) ) ] )
% 0.72/1.12  , 0, 2, substitution( 0, [ :=( X, multiply( X, inverse( Y ) ) ), :=( Y, Y )] )
% 0.72/1.12    , substitution( 1, [ :=( X, X ), :=( Y, inverse( Y ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 220, [ =( X, multiply( divide( X, Y ), Y ) ) ] )
% 0.72/1.12  , clause( 46, [ =( multiply( Y, inverse( X ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , 0, clause( 219, [ =( X, multiply( multiply( X, inverse( Y ) ), Y ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, Y ), :=( Y, X )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 221, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  , clause( 220, [ =( X, multiply( divide( X, Y ), Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 58, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  , clause( 221, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 223, [ =( X, divide( multiply( X, Y ), Y ) ) ] )
% 0.72/1.12  , clause( 48, [ =( divide( multiply( X, Y ), Y ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 224, [ =( inverse( X ), divide( Y, multiply( X, Y ) ) ) ] )
% 0.72/1.12  , clause( 56, [ =( multiply( inverse( X ), multiply( X, Y ) ), Y ) ] )
% 0.72/1.12  , 0, clause( 223, [ =( X, divide( multiply( X, Y ), Y ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, X ), :=( Y, Y )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, inverse( X ) ), :=( Y, multiply( X, Y ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 225, [ =( divide( Y, multiply( X, Y ) ), inverse( X ) ) ] )
% 0.72/1.12  , clause( 224, [ =( inverse( X ), divide( Y, multiply( X, Y ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 60, [ =( divide( Y, multiply( X, Y ) ), inverse( X ) ) ] )
% 0.72/1.12  , clause( 225, [ =( divide( Y, multiply( X, Y ) ), inverse( X ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 227, [ =( inverse( Y ), divide( X, multiply( Y, X ) ) ) ] )
% 0.72/1.12  , clause( 60, [ =( divide( Y, multiply( X, Y ) ), inverse( X ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 230, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , clause( 58, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  , 0, clause( 227, [ =( inverse( Y ), divide( X, multiply( Y, X ) ) ) ] )
% 0.72/1.12  , 0, 7, substitution( 0, [ :=( X, X ), :=( Y, Y )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, Y ), :=( Y, divide( X, Y ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 63, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , clause( 230, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 233, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 238, [ =( multiply( X, divide( Y, Z ) ), divide( X, divide( Z, Y )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 63, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , 0, clause( 233, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, Y ), :=( Y, Z )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, divide( Y, Z ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 74, [ =( multiply( Z, divide( X, Y ) ), divide( Z, divide( Y, X ) )
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 238, [ =( multiply( X, divide( Y, Z ) ), divide( X, divide( Z, Y
% 0.72/1.12     ) ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Z ), :=( Y, X ), :=( Z, Y )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 241, [ =( divide( Y, X ), inverse( divide( X, Y ) ) ) ] )
% 0.72/1.12  , clause( 63, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 245, [ =( divide( inverse( X ), Y ), inverse( multiply( Y, X ) ) )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 241, [ =( divide( Y, X ), inverse( divide( X, Y ) ) ) ] )
% 0.72/1.12  , 0, 6, substitution( 0, [ :=( X, Y ), :=( Y, X )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, Y ), :=( Y, inverse( X ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 75, [ =( divide( inverse( Y ), X ), inverse( multiply( X, Y ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 245, [ =( divide( inverse( X ), Y ), inverse( multiply( Y, X ) )
% 0.72/1.12     ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 249, [ =( X, multiply( divide( X, Y ), Y ) ) ] )
% 0.72/1.12  , clause( 58, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 252, [ =( inverse( X ), multiply( inverse( multiply( Y, X ) ), Y )
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 75, [ =( divide( inverse( Y ), X ), inverse( multiply( X, Y ) ) )
% 0.72/1.12     ] )
% 0.72/1.12  , 0, clause( 249, [ =( X, multiply( divide( X, Y ), Y ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, Y ), :=( Y, X )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, inverse( X ) ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 253, [ =( multiply( inverse( multiply( Y, X ) ), Y ), inverse( X )
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 252, [ =( inverse( X ), multiply( inverse( multiply( Y, X ) ), Y
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 76, [ =( multiply( inverse( multiply( Y, X ) ), Y ), inverse( X ) )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 253, [ =( multiply( inverse( multiply( Y, X ) ), Y ), inverse( X
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 254, [ =( divide( X, divide( Z, Y ) ), multiply( X, divide( Y, Z )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 74, [ =( multiply( Z, divide( X, Y ) ), divide( Z, divide( Y, X )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, Y ), :=( Y, Z ), :=( Z, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 256, [ =( divide( divide( X, divide( Y, Z ) ), divide( Z, Y ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 58, [ =( multiply( divide( X, Y ), Y ), X ) ] )
% 0.72/1.12  , 0, clause( 254, [ =( divide( X, divide( Z, Y ) ), multiply( X, divide( Y
% 0.72/1.12    , Z ) ) ) ] )
% 0.72/1.12  , 0, 10, substitution( 0, [ :=( X, X ), :=( Y, divide( Y, Z ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, divide( X, divide( Y, Z ) ) ), :=( Y, Y ), :=( 
% 0.72/1.12    Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 89, [ =( divide( divide( X, divide( Y, Z ) ), divide( Z, Y ) ), X )
% 0.72/1.12     ] )
% 0.72/1.12  , clause( 256, [ =( divide( divide( X, divide( Y, Z ) ), divide( Z, Y ) ), 
% 0.72/1.12    X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 259, [ =( Y, divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ) ) ] )
% 0.72/1.12  , clause( 10, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.72/1.12    X ), Z ) ) ) ), Z ), Y ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 270, [ =( divide( X, divide( Y, inverse( Z ) ) ), divide( inverse( 
% 0.72/1.12    divide( Z, X ) ), Y ) ) ] )
% 0.72/1.12  , clause( 89, [ =( divide( divide( X, divide( Y, Z ) ), divide( Z, Y ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , 0, clause( 259, [ =( Y, divide( inverse( divide( X, divide( Y, divide( 
% 0.72/1.12    inverse( X ), Z ) ) ) ), Z ) ) ] )
% 0.72/1.12  , 0, 11, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, inverse( Z ) )] )
% 0.72/1.12    , substitution( 1, [ :=( X, Z ), :=( Y, divide( X, divide( Y, inverse( Z
% 0.72/1.12     ) ) ) ), :=( Z, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 271, [ =( divide( X, divide( Y, inverse( Z ) ) ), inverse( multiply( 
% 0.72/1.12    Y, divide( Z, X ) ) ) ) ] )
% 0.72/1.12  , clause( 75, [ =( divide( inverse( Y ), X ), inverse( multiply( X, Y ) ) )
% 0.72/1.12     ] )
% 0.72/1.12  , 0, clause( 270, [ =( divide( X, divide( Y, inverse( Z ) ) ), divide( 
% 0.72/1.12    inverse( divide( Z, X ) ), Y ) ) ] )
% 0.72/1.12  , 0, 7, substitution( 0, [ :=( X, Y ), :=( Y, divide( Z, X ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 272, [ =( divide( X, divide( Y, inverse( Z ) ) ), inverse( divide( 
% 0.72/1.12    Y, divide( X, Z ) ) ) ) ] )
% 0.72/1.12  , clause( 74, [ =( multiply( Z, divide( X, Y ) ), divide( Z, divide( Y, X )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, clause( 271, [ =( divide( X, divide( Y, inverse( Z ) ) ), inverse( 
% 0.72/1.12    multiply( Y, divide( Z, X ) ) ) ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, Z ), :=( Y, X ), :=( Z, Y )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 273, [ =( divide( X, divide( Y, inverse( Z ) ) ), divide( divide( X
% 0.72/1.12    , Z ), Y ) ) ] )
% 0.72/1.12  , clause( 63, [ =( inverse( divide( X, Y ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , 0, clause( 272, [ =( divide( X, divide( Y, inverse( Z ) ) ), inverse( 
% 0.72/1.12    divide( Y, divide( X, Z ) ) ) ) ] )
% 0.72/1.12  , 0, 7, substitution( 0, [ :=( X, Y ), :=( Y, divide( X, Z ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 274, [ =( divide( X, multiply( Y, Z ) ), divide( divide( X, Z ), Y
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 273, [ =( divide( X, divide( Y, inverse( Z ) ) ), divide( 
% 0.72/1.12    divide( X, Z ), Y ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, Y ), :=( Y, Z )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 90, [ =( divide( X, multiply( Y, Z ) ), divide( divide( X, Z ), Y )
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 274, [ =( divide( X, multiply( Y, Z ) ), divide( divide( X, Z ), 
% 0.72/1.12    Y ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 277, [ =( divide( divide( X, Z ), Y ), divide( X, multiply( Y, Z )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 90, [ =( divide( X, multiply( Y, Z ) ), divide( divide( X, Z ), Y
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 280, [ =( divide( divide( X, Y ), inverse( multiply( Y, Z ) ) ), 
% 0.72/1.12    divide( X, inverse( Z ) ) ) ] )
% 0.72/1.12  , clause( 76, [ =( multiply( inverse( multiply( Y, X ) ), Y ), inverse( X )
% 0.72/1.12     ) ] )
% 0.72/1.12  , 0, clause( 277, [ =( divide( divide( X, Z ), Y ), divide( X, multiply( Y
% 0.72/1.12    , Z ) ) ) ] )
% 0.72/1.12  , 0, 11, substitution( 0, [ :=( X, Z ), :=( Y, Y )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, inverse( multiply( Y, Z ) ) ), :=( Z, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 282, [ =( divide( divide( X, Y ), inverse( multiply( Y, Z ) ) ), 
% 0.72/1.12    multiply( X, Z ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 280, [ =( divide( divide( X, Y ), inverse( multiply( Y, Z ) )
% 0.72/1.12     ), divide( X, inverse( Z ) ) ) ] )
% 0.72/1.12  , 0, 9, substitution( 0, [ :=( X, X ), :=( Y, Z )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 284, [ =( multiply( divide( X, Y ), multiply( Y, Z ) ), multiply( X
% 0.72/1.12    , Z ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 282, [ =( divide( divide( X, Y ), inverse( multiply( Y, Z ) )
% 0.72/1.12     ), multiply( X, Z ) ) ] )
% 0.72/1.12  , 0, 1, substitution( 0, [ :=( X, divide( X, Y ) ), :=( Y, multiply( Y, Z )
% 0.72/1.12     )] ), substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 97, [ =( multiply( divide( Z, X ), multiply( X, Y ) ), multiply( Z
% 0.72/1.12    , Y ) ) ] )
% 0.72/1.12  , clause( 284, [ =( multiply( divide( X, Y ), multiply( Y, Z ) ), multiply( 
% 0.72/1.12    X, Z ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Z ), :=( Y, X ), :=( Z, Y )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 287, [ =( divide( divide( X, Z ), Y ), divide( X, multiply( Y, Z )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 90, [ =( divide( X, multiply( Y, Z ) ), divide( divide( X, Z ), Y
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 290, [ =( divide( divide( X, inverse( Y ) ), Z ), divide( X, divide( 
% 0.72/1.12    Z, Y ) ) ) ] )
% 0.72/1.12  , clause( 46, [ =( multiply( Y, inverse( X ) ), divide( Y, X ) ) ] )
% 0.72/1.12  , 0, clause( 287, [ =( divide( divide( X, Z ), Y ), divide( X, multiply( Y
% 0.72/1.12    , Z ) ) ) ] )
% 0.72/1.12  , 0, 9, substitution( 0, [ :=( X, Y ), :=( Y, Z )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Z ), :=( Z, inverse( Y ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 291, [ =( divide( multiply( X, Y ), Z ), divide( X, divide( Z, Y )
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, clause( 290, [ =( divide( divide( X, inverse( Y ) ), Z ), divide( X, 
% 0.72/1.12    divide( Z, Y ) ) ) ] )
% 0.72/1.12  , 0, 2, substitution( 0, [ :=( X, X ), :=( Y, Y )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 292, [ =( divide( X, divide( Z, Y ) ), divide( multiply( X, Y ), Z
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , clause( 291, [ =( divide( multiply( X, Y ), Z ), divide( X, divide( Z, Y
% 0.72/1.12     ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 99, [ =( divide( Z, divide( X, Y ) ), divide( multiply( Z, Y ), X )
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 292, [ =( divide( X, divide( Z, Y ) ), divide( multiply( X, Y ), 
% 0.72/1.12    Z ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, Z ), :=( Y, Y ), :=( Z, X )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 293, [ =( multiply( X, Z ), multiply( divide( X, Y ), multiply( Y, 
% 0.72/1.12    Z ) ) ) ] )
% 0.72/1.12  , clause( 97, [ =( multiply( divide( Z, X ), multiply( X, Y ) ), multiply( 
% 0.72/1.12    Z, Y ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, Y ), :=( Y, Z ), :=( Z, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 299, [ =( multiply( X, multiply( Y, Z ) ), multiply( divide( X, 
% 0.72/1.12    divide( T, Y ) ), multiply( T, Z ) ) ) ] )
% 0.72/1.12  , clause( 97, [ =( multiply( divide( Z, X ), multiply( X, Y ) ), multiply( 
% 0.72/1.12    Z, Y ) ) ] )
% 0.72/1.12  , 0, clause( 293, [ =( multiply( X, Z ), multiply( divide( X, Y ), multiply( 
% 0.72/1.12    Y, Z ) ) ) ] )
% 0.72/1.12  , 0, 12, substitution( 0, [ :=( X, Y ), :=( Y, Z ), :=( Z, T )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, divide( T, Y ) ), :=( Z, multiply( 
% 0.72/1.12    Y, Z ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 301, [ =( multiply( X, multiply( Y, Z ) ), multiply( divide( 
% 0.72/1.12    multiply( X, Y ), T ), multiply( T, Z ) ) ) ] )
% 0.72/1.12  , clause( 99, [ =( divide( Z, divide( X, Y ) ), divide( multiply( Z, Y ), X
% 0.72/1.12     ) ) ] )
% 0.72/1.12  , 0, clause( 299, [ =( multiply( X, multiply( Y, Z ) ), multiply( divide( X
% 0.72/1.12    , divide( T, Y ) ), multiply( T, Z ) ) ) ] )
% 0.72/1.12  , 0, 7, substitution( 0, [ :=( X, T ), :=( Y, Y ), :=( Z, X )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 302, [ =( multiply( X, multiply( Y, Z ) ), multiply( multiply( X, Y
% 0.72/1.12     ), Z ) ) ] )
% 0.72/1.12  , clause( 97, [ =( multiply( divide( Z, X ), multiply( X, Y ) ), multiply( 
% 0.72/1.12    Z, Y ) ) ] )
% 0.72/1.12  , 0, clause( 301, [ =( multiply( X, multiply( Y, Z ) ), multiply( divide( 
% 0.72/1.12    multiply( X, Y ), T ), multiply( T, Z ) ) ) ] )
% 0.72/1.12  , 0, 6, substitution( 0, [ :=( X, T ), :=( Y, Z ), :=( Z, multiply( X, Y )
% 0.72/1.12     )] ), substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] )
% 0.72/1.12    ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 100, [ =( multiply( T, multiply( Y, Z ) ), multiply( multiply( T, Y
% 0.72/1.12     ), Z ) ) ] )
% 0.72/1.12  , clause( 302, [ =( multiply( X, multiply( Y, Z ) ), multiply( multiply( X
% 0.72/1.12    , Y ), Z ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, T ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 304, [ =( multiply( multiply( X, Y ), Z ), multiply( X, multiply( Y
% 0.72/1.12    , Z ) ) ) ] )
% 0.72/1.12  , clause( 100, [ =( multiply( T, multiply( Y, Z ) ), multiply( multiply( T
% 0.72/1.12    , Y ), Z ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, T ), :=( Y, Y ), :=( Z, Z ), :=( T, X )] )
% 0.72/1.12    ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 305, [ ~( =( multiply( multiply( a3, b3 ), c3 ), multiply( a3, 
% 0.72/1.12    multiply( b3, c3 ) ) ) ) ] )
% 0.72/1.12  , clause( 4, [ ~( =( multiply( a3, multiply( b3, c3 ) ), multiply( multiply( 
% 0.72/1.12    a3, b3 ), c3 ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  resolution(
% 0.72/1.12  clause( 306, [] )
% 0.72/1.12  , clause( 305, [ ~( =( multiply( multiply( a3, b3 ), c3 ), multiply( a3, 
% 0.72/1.12    multiply( b3, c3 ) ) ) ) ] )
% 0.72/1.12  , 0, clause( 304, [ =( multiply( multiply( X, Y ), Z ), multiply( X, 
% 0.72/1.12    multiply( Y, Z ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] ), substitution( 1, [ :=( X, a3 ), :=( Y, b3 ), 
% 0.72/1.12    :=( Z, c3 )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 101, [] )
% 0.72/1.12  , clause( 306, [] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  end.
% 0.72/1.12  
% 0.72/1.12  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.12  
% 0.72/1.12  Memory use:
% 0.72/1.12  
% 0.72/1.12  space for terms:        1246
% 0.72/1.12  space for clauses:      12462
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  clauses generated:      545
% 0.72/1.12  clauses kept:           102
% 0.72/1.12  clauses selected:       32
% 0.72/1.12  clauses deleted:        16
% 0.72/1.12  clauses inuse deleted:  0
% 0.72/1.12  
% 0.72/1.12  subsentry:          451
% 0.72/1.12  literals s-matched: 158
% 0.72/1.12  literals matched:   156
% 0.72/1.12  full subsumption:   0
% 0.72/1.12  
% 0.72/1.12  checksum:           -1470691085
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Bliksem ended
%------------------------------------------------------------------------------