TSTP Solution File: GRP458-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP458-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:07 EDT 2022

% Result   : Unsatisfiable 0.48s 1.12s
% Output   : Refutation 0.48s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : GRP458-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.14  % Command  : bliksem %s
% 0.13/0.35  % Computer : n023.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % DateTime : Tue Jun 14 04:08:51 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.48/1.12  *** allocated 10000 integers for termspace/termends
% 0.48/1.12  *** allocated 10000 integers for clauses
% 0.48/1.12  *** allocated 10000 integers for justifications
% 0.48/1.12  Bliksem 1.12
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  Automatic Strategy Selection
% 0.48/1.12  
% 0.48/1.12  Clauses:
% 0.48/1.12  [
% 0.48/1.12     [ =( divide( divide( divide( X, X ), divide( X, divide( Y, divide( 
% 0.48/1.12    divide( identity, X ), Z ) ) ) ), Z ), Y ) ],
% 0.48/1.12     [ =( multiply( X, Y ), divide( X, divide( identity, Y ) ) ) ],
% 0.48/1.12     [ =( inverse( X ), divide( identity, X ) ) ],
% 0.48/1.12     [ =( identity, divide( X, X ) ) ],
% 0.48/1.12     [ ~( =( multiply( identity, a2 ), a2 ) ) ]
% 0.48/1.12  ] .
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  percentage equality = 1.000000, percentage horn = 1.000000
% 0.48/1.12  This is a pure equality problem
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  Options Used:
% 0.48/1.12  
% 0.48/1.12  useres =            1
% 0.48/1.12  useparamod =        1
% 0.48/1.12  useeqrefl =         1
% 0.48/1.12  useeqfact =         1
% 0.48/1.12  usefactor =         1
% 0.48/1.12  usesimpsplitting =  0
% 0.48/1.12  usesimpdemod =      5
% 0.48/1.12  usesimpres =        3
% 0.48/1.12  
% 0.48/1.12  resimpinuse      =  1000
% 0.48/1.12  resimpclauses =     20000
% 0.48/1.12  substype =          eqrewr
% 0.48/1.12  backwardsubs =      1
% 0.48/1.12  selectoldest =      5
% 0.48/1.12  
% 0.48/1.12  litorderings [0] =  split
% 0.48/1.12  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.48/1.12  
% 0.48/1.12  termordering =      kbo
% 0.48/1.12  
% 0.48/1.12  litapriori =        0
% 0.48/1.12  termapriori =       1
% 0.48/1.12  litaposteriori =    0
% 0.48/1.12  termaposteriori =   0
% 0.48/1.12  demodaposteriori =  0
% 0.48/1.12  ordereqreflfact =   0
% 0.48/1.12  
% 0.48/1.12  litselect =         negord
% 0.48/1.12  
% 0.48/1.12  maxweight =         15
% 0.48/1.12  maxdepth =          30000
% 0.48/1.12  maxlength =         115
% 0.48/1.12  maxnrvars =         195
% 0.48/1.12  excuselevel =       1
% 0.48/1.12  increasemaxweight = 1
% 0.48/1.12  
% 0.48/1.12  maxselected =       10000000
% 0.48/1.12  maxnrclauses =      10000000
% 0.48/1.12  
% 0.48/1.12  showgenerated =    0
% 0.48/1.12  showkept =         0
% 0.48/1.12  showselected =     0
% 0.48/1.12  showdeleted =      0
% 0.48/1.12  showresimp =       1
% 0.48/1.12  showstatus =       2000
% 0.48/1.12  
% 0.48/1.12  prologoutput =     1
% 0.48/1.12  nrgoals =          5000000
% 0.48/1.12  totalproof =       1
% 0.48/1.12  
% 0.48/1.12  Symbols occurring in the translation:
% 0.48/1.12  
% 0.48/1.12  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.48/1.12  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.48/1.12  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.48/1.12  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.48/1.12  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.48/1.12  divide  [40, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.48/1.12  identity  [42, 0]      (w:1, o:11, a:1, s:1, b:0), 
% 0.48/1.12  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.48/1.12  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.48/1.12  a2  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  Starting Search:
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  Bliksems!, er is een bewijs:
% 0.48/1.12  % SZS status Unsatisfiable
% 0.48/1.12  % SZS output start Refutation
% 0.48/1.12  
% 0.48/1.12  clause( 0, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.48/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 1, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 7, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X )
% 0.48/1.12    , Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 8, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 9, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 13, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X ) ]
% 0.48/1.12     )
% 0.48/1.12  .
% 0.48/1.12  clause( 16, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) ), X
% 0.48/1.12     ), Y ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 20, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.48/1.12    identity ), X ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 38, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 43, [ =( inverse( inverse( X ) ), X ) ] )
% 0.48/1.12  .
% 0.48/1.12  clause( 48, [] )
% 0.48/1.12  .
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  % SZS output end Refutation
% 0.48/1.12  found a proof!
% 0.48/1.12  
% 0.48/1.12  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.48/1.12  
% 0.48/1.12  initialclauses(
% 0.48/1.12  [ clause( 50, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.48/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , clause( 51, [ =( multiply( X, Y ), divide( X, divide( identity, Y ) ) ) ]
% 0.48/1.12     )
% 0.48/1.12  , clause( 52, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.48/1.12  , clause( 53, [ =( identity, divide( X, X ) ) ] )
% 0.48/1.12  , clause( 54, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.48/1.12  ] ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 0, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.48/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , clause( 50, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.48/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.48/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 57, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ]
% 0.48/1.12     )
% 0.48/1.12  , clause( 51, [ =( multiply( X, Y ), divide( X, divide( identity, Y ) ) ) ]
% 0.48/1.12     )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 1, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , clause( 57, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) ) ]
% 0.48/1.12     )
% 0.48/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.48/1.12     )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 60, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , clause( 52, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , clause( 60, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 64, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , clause( 53, [ =( identity, divide( X, X ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , clause( 64, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.48/1.12  , clause( 54, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.48/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 70, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 72, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , 0, clause( 70, [ =( inverse( X ), divide( identity, X ) ) ] )
% 0.48/1.12  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.48/1.12    identity )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  , clause( 72, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 76, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, clause( 1, [ =( divide( X, divide( identity, Y ) ), multiply( X, Y ) )
% 0.48/1.12     ] )
% 0.48/1.12  , 0, 3, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.48/1.12    :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , clause( 76, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.48/1.12     )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 82, [ =( divide( divide( identity, divide( X, divide( Y, divide( 
% 0.48/1.12    divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , 0, clause( 0, [ =( divide( divide( divide( X, X ), divide( X, divide( Y, 
% 0.48/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , 0, 3, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.48/1.12    :=( Y, Y ), :=( Z, Z )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 84, [ =( divide( divide( identity, divide( X, divide( Y, divide( 
% 0.48/1.12    inverse( X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, clause( 82, [ =( divide( divide( identity, divide( X, divide( Y, 
% 0.48/1.12    divide( divide( identity, X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , 0, 9, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.48/1.12    :=( Y, Y ), :=( Z, Z )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 86, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X
% 0.48/1.12     ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, clause( 84, [ =( divide( divide( identity, divide( X, divide( Y, 
% 0.48/1.12    divide( inverse( X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , 0, 2, substitution( 0, [ :=( X, divide( X, divide( Y, divide( inverse( X
% 0.48/1.12     ), Z ) ) ) )] ), substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )
% 0.48/1.12    ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 7, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X )
% 0.48/1.12    , Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , clause( 86, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.48/1.12    X ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.48/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 89, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.48/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 90, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.48/1.12  , clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  , 0, clause( 89, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.48/1.12  , 0, 6, substitution( 0, [] ), substitution( 1, [ :=( X, X ), :=( Y, 
% 0.48/1.12    identity )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 8, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.48/1.12  , clause( 90, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 92, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.48/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 94, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, clause( 92, [ =( multiply( X, Y ), divide( X, inverse( Y ) ) ) ] )
% 0.48/1.12  , 0, 4, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.48/1.12    :=( X, identity ), :=( Y, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 9, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , clause( 94, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 97, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.48/1.12  , clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 98, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.48/1.12  , clause( 9, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , 0, clause( 97, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.48/1.12  , 0, 3, substitution( 0, [ :=( X, a2 )] ), substitution( 1, [] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 99, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.48/1.12  , clause( 98, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.48/1.12  , clause( 99, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.48/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 101, [ =( Y, divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.48/1.12    X ), Z ) ) ) ), Z ) ) ] )
% 0.48/1.12  , clause( 7, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X
% 0.48/1.12     ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 105, [ =( X, divide( inverse( divide( identity, divide( X, divide( 
% 0.48/1.12    identity, Y ) ) ) ), Y ) ) ] )
% 0.48/1.12  , clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  , 0, clause( 101, [ =( Y, divide( inverse( divide( X, divide( Y, divide( 
% 0.48/1.12    inverse( X ), Z ) ) ) ), Z ) ) ] )
% 0.48/1.12  , 0, 9, substitution( 0, [] ), substitution( 1, [ :=( X, identity ), :=( Y
% 0.48/1.12    , X ), :=( Z, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 107, [ =( X, divide( inverse( divide( identity, divide( X, inverse( 
% 0.48/1.12    Y ) ) ) ), Y ) ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, clause( 105, [ =( X, divide( inverse( divide( identity, divide( X, 
% 0.48/1.12    divide( identity, Y ) ) ) ), Y ) ) ] )
% 0.48/1.12  , 0, 8, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.48/1.12    :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 109, [ =( X, divide( inverse( inverse( divide( X, inverse( Y ) ) )
% 0.48/1.12     ), Y ) ) ] )
% 0.48/1.12  , clause( 2, [ =( divide( identity, X ), inverse( X ) ) ] )
% 0.48/1.12  , 0, clause( 107, [ =( X, divide( inverse( divide( identity, divide( X, 
% 0.48/1.12    inverse( Y ) ) ) ), Y ) ) ] )
% 0.48/1.12  , 0, 4, substitution( 0, [ :=( X, divide( X, inverse( Y ) ) )] ), 
% 0.48/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 110, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y ) )
% 0.48/1.12     ] )
% 0.48/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , 0, clause( 109, [ =( X, divide( inverse( inverse( divide( X, inverse( Y )
% 0.48/1.12     ) ) ), Y ) ) ] )
% 0.48/1.12  , 0, 5, substitution( 0, [ :=( X, X ), :=( Y, Y )] ), substitution( 1, [ 
% 0.48/1.12    :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 111, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X )
% 0.48/1.12     ] )
% 0.48/1.12  , clause( 110, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y )
% 0.48/1.12     ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 13, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X ) ]
% 0.48/1.12     )
% 0.48/1.12  , clause( 111, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X
% 0.48/1.12     ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.48/1.12     )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 113, [ =( Y, divide( inverse( divide( X, divide( Y, divide( inverse( 
% 0.48/1.12    X ), Z ) ) ) ), Z ) ) ] )
% 0.48/1.12  , clause( 7, [ =( divide( inverse( divide( X, divide( Y, divide( inverse( X
% 0.48/1.12     ), Z ) ) ) ), Z ), Y ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 116, [ =( X, divide( inverse( divide( Y, divide( X, identity ) ) )
% 0.48/1.12    , inverse( Y ) ) ) ] )
% 0.48/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , 0, clause( 113, [ =( Y, divide( inverse( divide( X, divide( Y, divide( 
% 0.48/1.12    inverse( X ), Z ) ) ) ), Z ) ) ] )
% 0.48/1.12  , 0, 8, substitution( 0, [ :=( X, inverse( Y ) )] ), substitution( 1, [ 
% 0.48/1.12    :=( X, Y ), :=( Y, X ), :=( Z, inverse( Y ) )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 117, [ =( X, multiply( inverse( divide( Y, divide( X, identity ) )
% 0.48/1.12     ), Y ) ) ] )
% 0.48/1.12  , clause( 6, [ =( divide( X, inverse( Y ) ), multiply( X, Y ) ) ] )
% 0.48/1.12  , 0, clause( 116, [ =( X, divide( inverse( divide( Y, divide( X, identity )
% 0.48/1.12     ) ), inverse( Y ) ) ) ] )
% 0.48/1.12  , 0, 2, substitution( 0, [ :=( X, inverse( divide( Y, divide( X, identity )
% 0.48/1.12     ) ) ), :=( Y, Y )] ), substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 118, [ =( multiply( inverse( divide( Y, divide( X, identity ) ) ), 
% 0.48/1.12    Y ), X ) ] )
% 0.48/1.12  , clause( 117, [ =( X, multiply( inverse( divide( Y, divide( X, identity )
% 0.48/1.12     ) ), Y ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 16, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) ), X
% 0.48/1.12     ), Y ) ] )
% 0.48/1.12  , clause( 118, [ =( multiply( inverse( divide( Y, divide( X, identity ) ) )
% 0.48/1.12    , Y ), X ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.48/1.12     )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 120, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y ) )
% 0.48/1.12     ] )
% 0.48/1.12  , clause( 13, [ =( divide( inverse( inverse( multiply( X, Y ) ) ), Y ), X )
% 0.48/1.12     ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 123, [ =( X, divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.48/1.12    identity ) ) ] )
% 0.48/1.12  , clause( 8, [ =( multiply( X, identity ), divide( X, identity ) ) ] )
% 0.48/1.12  , 0, clause( 120, [ =( X, divide( inverse( inverse( multiply( X, Y ) ) ), Y
% 0.48/1.12     ) ) ] )
% 0.48/1.12  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.48/1.12    :=( Y, identity )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 124, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.48/1.12    identity ), X ) ] )
% 0.48/1.12  , clause( 123, [ =( X, divide( inverse( inverse( divide( X, identity ) ) )
% 0.48/1.12    , identity ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 20, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.48/1.12    identity ), X ) ] )
% 0.48/1.12  , clause( 124, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.48/1.12    identity ), X ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 126, [ =( Y, multiply( inverse( divide( X, divide( Y, identity ) )
% 0.48/1.12     ), X ) ) ] )
% 0.48/1.12  , clause( 16, [ =( multiply( inverse( divide( X, divide( Y, identity ) ) )
% 0.48/1.12    , X ), Y ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 129, [ =( X, multiply( inverse( identity ), divide( X, identity ) )
% 0.48/1.12     ) ] )
% 0.48/1.12  , clause( 3, [ =( divide( X, X ), identity ) ] )
% 0.48/1.12  , 0, clause( 126, [ =( Y, multiply( inverse( divide( X, divide( Y, identity
% 0.48/1.12     ) ) ), X ) ) ] )
% 0.48/1.12  , 0, 4, substitution( 0, [ :=( X, divide( X, identity ) )] ), 
% 0.48/1.12    substitution( 1, [ :=( X, divide( X, identity ) ), :=( Y, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 131, [ =( X, multiply( identity, divide( X, identity ) ) ) ] )
% 0.48/1.12  , clause( 5, [ =( inverse( identity ), identity ) ] )
% 0.48/1.12  , 0, clause( 129, [ =( X, multiply( inverse( identity ), divide( X, 
% 0.48/1.12    identity ) ) ) ] )
% 0.48/1.12  , 0, 3, substitution( 0, [] ), substitution( 1, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 132, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ] )
% 0.48/1.12  , clause( 9, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , 0, clause( 131, [ =( X, multiply( identity, divide( X, identity ) ) ) ]
% 0.48/1.12     )
% 0.48/1.12  , 0, 2, substitution( 0, [ :=( X, divide( X, identity ) )] ), 
% 0.48/1.12    substitution( 1, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 133, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.48/1.12  , clause( 132, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 38, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.48/1.12  , clause( 133, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 135, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ] )
% 0.48/1.12  , clause( 38, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 138, [ =( inverse( inverse( divide( X, identity ) ) ), inverse( 
% 0.48/1.12    inverse( X ) ) ) ] )
% 0.48/1.12  , clause( 20, [ =( divide( inverse( inverse( divide( X, identity ) ) ), 
% 0.48/1.12    identity ), X ) ] )
% 0.48/1.12  , 0, clause( 135, [ =( X, inverse( inverse( divide( X, identity ) ) ) ) ]
% 0.48/1.12     )
% 0.48/1.12  , 0, 8, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, inverse( 
% 0.48/1.12    inverse( divide( X, identity ) ) ) )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  paramod(
% 0.48/1.12  clause( 139, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , clause( 38, [ =( inverse( inverse( divide( X, identity ) ) ), X ) ] )
% 0.48/1.12  , 0, clause( 138, [ =( inverse( inverse( divide( X, identity ) ) ), inverse( 
% 0.48/1.12    inverse( X ) ) ) ] )
% 0.48/1.12  , 0, 1, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.48/1.12    ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 140, [ =( inverse( inverse( X ) ), X ) ] )
% 0.48/1.12  , clause( 139, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 43, [ =( inverse( inverse( X ) ), X ) ] )
% 0.48/1.12  , clause( 140, [ =( inverse( inverse( X ) ), X ) ] )
% 0.48/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 141, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , clause( 43, [ =( inverse( inverse( X ) ), X ) ] )
% 0.48/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  eqswap(
% 0.48/1.12  clause( 142, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.48/1.12  , clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  resolution(
% 0.48/1.12  clause( 143, [] )
% 0.48/1.12  , clause( 142, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.48/1.12  , 0, clause( 141, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.48/1.12  , 0, substitution( 0, [] ), substitution( 1, [ :=( X, a2 )] )).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  subsumption(
% 0.48/1.12  clause( 48, [] )
% 0.48/1.12  , clause( 143, [] )
% 0.48/1.12  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  end.
% 0.48/1.12  
% 0.48/1.12  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.48/1.12  
% 0.48/1.12  Memory use:
% 0.48/1.12  
% 0.48/1.12  space for terms:        602
% 0.48/1.12  space for clauses:      5492
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  clauses generated:      141
% 0.48/1.12  clauses kept:           49
% 0.48/1.12  clauses selected:       18
% 0.48/1.12  clauses deleted:        2
% 0.48/1.12  clauses inuse deleted:  0
% 0.48/1.12  
% 0.48/1.12  subsentry:          237
% 0.48/1.12  literals s-matched: 92
% 0.48/1.12  literals matched:   92
% 0.48/1.12  full subsumption:   0
% 0.48/1.12  
% 0.48/1.12  checksum:           158936027
% 0.48/1.12  
% 0.48/1.12  
% 0.48/1.12  Bliksem ended
%------------------------------------------------------------------------------