TSTP Solution File: GRP452-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP452-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:20:21 EDT 2023

% Result   : Unsatisfiable 0.19s 0.60s
% Output   : CNFRefutation 0.19s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    9
% Syntax   : Number of formulae    :   50 (  45 unt;   5 typ;   0 def)
%            Number of atoms       :   45 (  44 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    6 (   6   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   81 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    divide: ( $i * $i ) > $i ).

tff(decl_23,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_24,type,
    inverse: $i > $i ).

tff(decl_25,type,
    b2: $i ).

tff(decl_26,type,
    a2: $i ).

cnf(multiply,axiom,
    multiply(X1,X2) = divide(X1,divide(divide(X3,X3),X2)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(inverse,axiom,
    inverse(X1) = divide(divide(X2,X2),X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

cnf(single_axiom,axiom,
    divide(divide(divide(X1,X1),divide(X1,divide(X2,divide(divide(divide(X1,X1),X1),X3)))),X3) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_2,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_2) ).

cnf(c_0_4,axiom,
    multiply(X1,X2) = divide(X1,divide(divide(X3,X3),X2)),
    multiply ).

cnf(c_0_5,axiom,
    inverse(X1) = divide(divide(X2,X2),X1),
    inverse ).

cnf(c_0_6,axiom,
    divide(divide(divide(X1,X1),divide(X1,divide(X2,divide(divide(divide(X1,X1),X1),X3)))),X3) = X2,
    single_axiom ).

cnf(c_0_7,plain,
    divide(X1,inverse(X2)) = multiply(X1,X2),
    inference(rw,[status(thm)],[c_0_4,c_0_5]) ).

cnf(c_0_8,plain,
    divide(inverse(divide(X1,X1)),X2) = inverse(X2),
    inference(spm,[status(thm)],[c_0_5,c_0_5]) ).

cnf(c_0_9,plain,
    divide(inverse(divide(X1,divide(X2,divide(inverse(X1),X3)))),X3) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_6,c_0_5]),c_0_5]) ).

cnf(c_0_10,plain,
    divide(multiply(inverse(X1),X1),X2) = inverse(X2),
    inference(spm,[status(thm)],[c_0_5,c_0_7]) ).

cnf(c_0_11,plain,
    multiply(inverse(divide(X1,X1)),X2) = inverse(inverse(X2)),
    inference(spm,[status(thm)],[c_0_7,c_0_8]) ).

cnf(c_0_12,plain,
    divide(inverse(inverse(multiply(X1,X2))),X2) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_9,c_0_8]),c_0_7]),c_0_5]) ).

cnf(c_0_13,plain,
    multiply(divide(X1,X1),X2) = inverse(inverse(X2)),
    inference(spm,[status(thm)],[c_0_5,c_0_7]) ).

cnf(c_0_14,plain,
    multiply(multiply(inverse(X1),X1),X2) = inverse(inverse(X2)),
    inference(spm,[status(thm)],[c_0_7,c_0_10]) ).

cnf(c_0_15,plain,
    multiply(inverse(multiply(inverse(X1),X1)),X2) = inverse(inverse(X2)),
    inference(spm,[status(thm)],[c_0_11,c_0_7]) ).

cnf(c_0_16,plain,
    divide(multiply(divide(b2,b2),multiply(X1,X2)),X2) = X1,
    inference(rw,[status(thm)],[c_0_12,c_0_13]) ).

cnf(c_0_17,plain,
    multiply(multiply(inverse(X1),X1),X2) = multiply(divide(b2,b2),X2),
    inference(rw,[status(thm)],[c_0_14,c_0_13]) ).

cnf(c_0_18,plain,
    multiply(inverse(multiply(inverse(X1),X1)),X2) = multiply(divide(b2,b2),X2),
    inference(rw,[status(thm)],[c_0_15,c_0_13]) ).

cnf(c_0_19,plain,
    multiply(inverse(X1),X1) = divide(b2,b2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16,c_0_17]),c_0_16]) ).

cnf(c_0_20,plain,
    multiply(inverse(divide(X1,X1)),X2) = multiply(divide(b2,b2),X2),
    inference(rw,[status(thm)],[c_0_11,c_0_13]) ).

cnf(c_0_21,plain,
    inverse(divide(X1,divide(X2,divide(inverse(X1),divide(inverse(X3),X4))))) = divide(inverse(divide(X3,X2)),X4),
    inference(spm,[status(thm)],[c_0_9,c_0_9]) ).

cnf(c_0_22,plain,
    divide(b2,b2) = divide(X1,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16,c_0_13]),c_0_13]),c_0_16]) ).

cnf(c_0_23,plain,
    divide(inverse(multiply(inverse(X1),X1)),X2) = inverse(X2),
    inference(spm,[status(thm)],[c_0_8,c_0_7]) ).

cnf(c_0_24,plain,
    divide(X1,multiply(divide(X2,X2),X3)) = multiply(X1,inverse(X3)),
    inference(spm,[status(thm)],[c_0_7,c_0_13]) ).

cnf(c_0_25,plain,
    multiply(divide(b2,b2),divide(b2,b2)) = divide(b2,b2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_18,c_0_19]),c_0_19]) ).

cnf(c_0_26,plain,
    inverse(divide(X1,X1)) = divide(b2,b2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16,c_0_20]),c_0_16]) ).

cnf(c_0_27,plain,
    inverse(divide(X1,divide(b2,b2))) = inverse(X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_22]),c_0_9]) ).

cnf(c_0_28,plain,
    inverse(multiply(divide(X1,X1),X2)) = multiply(divide(b2,b2),inverse(X2)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_18]) ).

cnf(c_0_29,plain,
    multiply(X1,divide(b2,b2)) = divide(X1,divide(b2,b2)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_25]),c_0_26]) ).

cnf(c_0_30,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    prove_these_axioms_2 ).

cnf(c_0_31,plain,
    multiply(divide(b2,b2),inverse(X1)) = inverse(X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_16]),c_0_28]),c_0_29]),c_0_27]) ).

cnf(c_0_32,plain,
    divide(X1,X1) = divide(X2,X2),
    inference(spm,[status(thm)],[c_0_22,c_0_22]) ).

cnf(c_0_33,negated_conjecture,
    inverse(inverse(a2)) != a2,
    inference(rw,[status(thm)],[c_0_30,c_0_14]) ).

cnf(c_0_34,plain,
    multiply(divide(X1,X1),inverse(X2)) = inverse(X2),
    inference(spm,[status(thm)],[c_0_31,c_0_32]) ).

cnf(c_0_35,negated_conjecture,
    multiply(divide(b2,b2),a2) != a2,
    inference(rw,[status(thm)],[c_0_33,c_0_13]) ).

cnf(c_0_36,plain,
    multiply(X1,multiply(divide(b2,b2),X2)) = multiply(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_34]),c_0_7]),c_0_13]) ).

cnf(c_0_37,negated_conjecture,
    multiply(divide(X1,X1),a2) != a2,
    inference(spm,[status(thm)],[c_0_35,c_0_22]) ).

cnf(c_0_38,plain,
    divide(inverse(multiply(multiply(divide(X1,X1),X2),inverse(X2))),X3) = inverse(X3),
    inference(spm,[status(thm)],[c_0_23,c_0_13]) ).

cnf(c_0_39,plain,
    divide(inverse(divide(divide(X1,divide(X2,divide(inverse(X1),X3))),divide(X4,X2))),X3) = X4,
    inference(spm,[status(thm)],[c_0_9,c_0_9]) ).

cnf(c_0_40,plain,
    divide(multiply(divide(b2,b2),X1),X1) = divide(b2,b2),
    inference(spm,[status(thm)],[c_0_16,c_0_36]) ).

cnf(c_0_41,negated_conjecture,
    multiply(multiply(divide(b2,b2),multiply(multiply(divide(X1,X1),X2),inverse(X2))),a2) != a2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_37,c_0_38]),c_0_13]) ).

cnf(c_0_42,plain,
    multiply(divide(b2,b2),X1) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39,c_0_40]),c_0_27]),c_0_9]) ).

cnf(c_0_43,plain,
    multiply(multiply(multiply(divide(X1,X1),X2),inverse(X2)),X3) = multiply(divide(b2,b2),X3),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_24]),c_0_13]) ).

cnf(c_0_44,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42]),c_0_43]),c_0_42])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem    : GRP452-1 : TPTP v8.1.2. Released v2.6.0.
% 0.07/0.13  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n018.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Mon Aug 28 22:52:17 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.57  start to proof: theBenchmark
% 0.19/0.60  % Version  : CSE_E---1.5
% 0.19/0.60  % Problem  : theBenchmark.p
% 0.19/0.60  % Proof found
% 0.19/0.60  % SZS status Theorem for theBenchmark.p
% 0.19/0.60  % SZS output start Proof
% See solution above
% 0.19/0.61  % Total time : 0.023000 s
% 0.19/0.61  % SZS output end Proof
% 0.19/0.61  % Total time : 0.025000 s
%------------------------------------------------------------------------------