TSTP Solution File: GRP448-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP448-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:55:31 EDT 2022

% Result   : Unsatisfiable 2.72s 2.81s
% Output   : Proof 2.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : GRP448-1 : TPTP v8.1.0. Released v2.6.0.
% 0.06/0.13  % Command  : moca.sh %s
% 0.14/0.34  % Computer : n015.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Mon Jun 13 10:38:37 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 2.72/2.81  % SZS status Unsatisfiable
% 2.72/2.81  % SZS output start Proof
% 2.72/2.81  The input problem is unsatisfiable because
% 2.72/2.81  
% 2.72/2.81  [1] the following set of Horn clauses is unsatisfiable:
% 2.72/2.81  
% 2.72/2.81  	divide(A, divide(divide(divide(divide(B, B), B), C), divide(divide(divide(B, B), A), C))) = B
% 2.72/2.81  	multiply(A, B) = divide(A, divide(divide(C, C), B))
% 2.72/2.81  	inverse(A) = divide(divide(B, B), A)
% 2.72/2.81  	multiply(inverse(a1), a1) = multiply(inverse(b1), b1) ==> \bottom
% 2.72/2.81  
% 2.72/2.81  This holds because
% 2.72/2.81  
% 2.72/2.81  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 2.72/2.81  
% 2.72/2.81  E:
% 2.72/2.81  	divide(A, divide(divide(divide(divide(B, B), B), C), divide(divide(divide(B, B), A), C))) = B
% 2.72/2.81  	f1(multiply(inverse(a1), a1)) = true__
% 2.72/2.81  	f1(multiply(inverse(b1), b1)) = false__
% 2.72/2.81  	inverse(A) = divide(divide(B, B), A)
% 2.72/2.81  	multiply(A, B) = divide(A, divide(divide(C, C), B))
% 2.72/2.81  G:
% 2.72/2.81  	true__ = false__
% 2.72/2.81  
% 2.72/2.81  This holds because
% 2.72/2.81  
% 2.72/2.81  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 2.72/2.81  
% 2.72/2.81  
% 2.72/2.81  	divide(A, divide(divide(divide(divide(B, B), B), C), divide(divide(divide(B, B), A), C))) -> B
% 2.72/2.81  	divide(X1, X1) -> g1
% 2.72/2.81  	divide(Y0, divide(divide(inverse(Y1), Y2), divide(inverse(Y0), Y2))) -> Y1
% 2.72/2.81  	divide(Y0, divide(g1, divide(divide(g1, Y0), X0))) -> divide(g1, divide(g1, divide(g1, X0)))
% 2.72/2.81  	divide(Y0, divide(g1, divide(g1, Y0))) -> g1
% 2.72/2.81  	divide(Y0, inverse(divide(inverse(Y0), inverse(Y1)))) -> Y1
% 2.72/2.81  	divide(Y1, g1) -> Y1
% 2.72/2.81  	divide(divide(divide(g1, X0), X1), divide(g1, X1)) -> divide(g1, divide(g1, divide(g1, X0)))
% 2.72/2.81  	divide(divide(g1, Y0), divide(g1, divide(Y0, divide(g1, Y1)))) -> Y1
% 2.72/2.81  	divide(divide(g1, Y0), divide(g1, divide(Y0, g1))) -> g1
% 2.72/2.81  	divide(divide(g1, divide(g1, Y0)), g1) -> divide(Y0, g1)
% 2.72/2.81  	divide(g1, divide(divide(X0, Y1), divide(g1, Y1))) -> divide(g1, divide(g1, divide(g1, X0)))
% 2.72/2.81  	divide(g1, divide(g1, divide(g1, divide(g1, Y0)))) -> Y0
% 2.72/2.81  	divide(g1, inverse(divide(g1, inverse(Y1)))) -> Y1
% 2.72/2.81  	divide(inverse(X0), inverse(divide(X0, inverse(Y1)))) -> Y1
% 2.72/2.81  	divide(inverse(Y0), inverse(divide(Y0, g1))) -> g1
% 2.72/2.81  	divide(inverse(inverse(Y0)), g1) -> divide(Y0, g1)
% 2.72/2.81  	divide(inverse(inverse(Y0)), inverse(X1)) -> divide(Y0, divide(g1, X1))
% 2.72/2.81  	f1(divide(inverse(a1), inverse(a1))) -> true__
% 2.72/2.81  	f1(g1) -> false__
% 2.72/2.81  	f1(g1) -> true__
% 2.72/2.81  	f1(inverse(divide(X1, X1))) -> false__
% 2.72/2.81  	f1(inverse(divide(X1, X1))) -> true__
% 2.72/2.81  	f1(multiply(inverse(a1), a1)) -> true__
% 2.72/2.81  	f1(multiply(inverse(b1), b1)) -> false__
% 2.72/2.81  	g2 -> g1
% 2.72/2.81  	inverse(Y1) -> divide(g1, Y1)
% 2.72/2.81  	inverse(divide(divide(inverse(Y0), inverse(inverse(inverse(X0)))), X0)) -> Y0
% 2.72/2.81  	inverse(divide(divide(inverse(Y1), Y2), divide(inverse(divide(X0, X0)), Y2))) -> Y1
% 2.72/2.81  	inverse(divide(divide(inverse(Y1), Y2), divide(inverse(inverse(divide(X0, X0))), Y2))) -> Y1
% 2.72/2.81  	inverse(divide(divide(inverse(Y1), Y2), inverse(Y2))) -> Y1
% 2.72/2.81  	inverse(inverse(divide(inverse(inverse(divide(X0, X0))), inverse(Y1)))) -> Y1
% 2.72/2.81  	inverse(inverse(inverse(inverse(Y1)))) -> Y1
% 2.72/2.81  	multiply(A, B) -> divide(A, divide(g1, B))
% 2.72/2.81  	true__ -> false__
% 2.72/2.81  with the LPO induced by
% 2.72/2.81  	a1 > b1 > multiply > g2 > inverse > divide > g1 > f1 > true__ > false__
% 2.72/2.81  
% 2.72/2.81  % SZS output end Proof
% 2.72/2.81  
%------------------------------------------------------------------------------