TSTP Solution File: GRP445-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP445-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:02 EDT 2022

% Result   : Unsatisfiable 1.96s 2.13s
% Output   : Refutation 1.96s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   20 (  20 unt;   0 nHn;   5 RR)
%            Number of literals    :   20 (  19 equ;   4 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   37 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('GRP445-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(inverse(b1),b1) != multiply(inverse(a1),a1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    divide(A,divide(divide(divide(divide(A,A),B),C),divide(divide(divide(A,A),A),C))) = B,
    file('GRP445-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = divide(A,divide(divide(C,C),B)),
    file('GRP445-1.p',unknown),
    [] ).

cnf(7,axiom,
    inverse(A) = divide(divide(B,B),A),
    file('GRP445-1.p',unknown),
    [] ).

cnf(8,plain,
    divide(A,divide(divide(B,B),C)) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(9,plain,
    divide(divide(A,A),B) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(13,plain,
    divide(inverse(divide(A,A)),B) = inverse(B),
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,9.1.1.1,9.1.1')] ).

cnf(14,plain,
    inverse(A) = divide(inverse(divide(B,B)),A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13])]),
    [iquote('copy,13,flip.1')] ).

cnf(22,plain,
    divide(divide(A,A),B) = divide(inverse(divide(C,C)),B),
    inference(para_into,[status(thm),theory(equality)],[14,7]),
    [iquote('para_into,14.1.1,7.1.1')] ).

cnf(27,plain,
    divide(inverse(divide(A,A)),divide(divide(divide(inverse(inverse(divide(A,A))),B),C),divide(divide(divide(inverse(divide(A,A)),inverse(divide(A,A))),inverse(divide(A,A))),C))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,13]),
    [iquote('para_into,4.1.1.2.1.1.1,13.1.1')] ).

cnf(32,plain,
    divide(A,divide(divide(inverse(B),C),divide(divide(divide(A,A),A),C))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,9]),
    [iquote('para_into,4.1.1.2.1.1,9.1.1')] ).

cnf(89,plain,
    divide(A,inverse(B)) = multiply(A,B),
    inference(para_into,[status(thm),theory(equality)],[8,9]),
    [iquote('para_into,8.1.1.2,9.1.1')] ).

cnf(102,plain,
    multiply(A,B) = divide(A,inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[89])]),
    [iquote('copy,89,flip.1')] ).

cnf(173,plain,
    divide(inverse(b1),inverse(b1)) != multiply(inverse(a1),a1),
    inference(para_from,[status(thm),theory(equality)],[102,2]),
    [iquote('para_from,102.1.1,2.1.1')] ).

cnf(351,plain,
    divide(A,A) = inverse(inverse(divide(B,B))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,22]),32]),
    [iquote('para_into,27.1.1.2.1,22.1.1,demod,32')] ).

cnf(356,plain,
    multiply(inverse(A),A) = inverse(inverse(divide(B,B))),
    inference(para_into,[status(thm),theory(equality)],[351,89]),
    [iquote('para_into,351.1.1,89.1.1')] ).

cnf(361,plain,
    inverse(inverse(divide(A,A))) = multiply(inverse(B),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[356])]),
    [iquote('copy,356,flip.1')] ).

cnf(364,plain,
    inverse(inverse(divide(A,A))) != multiply(inverse(a1),a1),
    inference(para_from,[status(thm),theory(equality)],[351,173]),
    [iquote('para_from,351.1.1,173.1.1')] ).

cnf(365,plain,
    $false,
    inference(binary,[status(thm)],[364,361]),
    [iquote('binary,364.1,361.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.11  % Problem  : GRP445-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n025.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:16:00 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.96/2.13  ----- Otter 3.3f, August 2004 -----
% 1.96/2.13  The process was started by sandbox2 on n025.cluster.edu,
% 1.96/2.13  Wed Jul 27 05:16:00 2022
% 1.96/2.13  The command was "./otter".  The process ID is 12788.
% 1.96/2.13  
% 1.96/2.13  set(prolog_style_variables).
% 1.96/2.13  set(auto).
% 1.96/2.13     dependent: set(auto1).
% 1.96/2.13     dependent: set(process_input).
% 1.96/2.13     dependent: clear(print_kept).
% 1.96/2.13     dependent: clear(print_new_demod).
% 1.96/2.13     dependent: clear(print_back_demod).
% 1.96/2.13     dependent: clear(print_back_sub).
% 1.96/2.13     dependent: set(control_memory).
% 1.96/2.13     dependent: assign(max_mem, 12000).
% 1.96/2.13     dependent: assign(pick_given_ratio, 4).
% 1.96/2.13     dependent: assign(stats_level, 1).
% 1.96/2.13     dependent: assign(max_seconds, 10800).
% 1.96/2.13  clear(print_given).
% 1.96/2.13  
% 1.96/2.13  list(usable).
% 1.96/2.13  0 [] A=A.
% 1.96/2.13  0 [] divide(A,divide(divide(divide(divide(A,A),B),C),divide(divide(divide(A,A),A),C)))=B.
% 1.96/2.13  0 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.96/2.13  0 [] inverse(A)=divide(divide(B,B),A).
% 1.96/2.13  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1).
% 1.96/2.13  end_of_list.
% 1.96/2.13  
% 1.96/2.13  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.96/2.13  
% 1.96/2.13  All clauses are units, and equality is present; the
% 1.96/2.13  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.96/2.13  
% 1.96/2.13     dependent: set(knuth_bendix).
% 1.96/2.13     dependent: set(anl_eq).
% 1.96/2.13     dependent: set(para_from).
% 1.96/2.13     dependent: set(para_into).
% 1.96/2.13     dependent: clear(para_from_right).
% 1.96/2.13     dependent: clear(para_into_right).
% 1.96/2.13     dependent: set(para_from_vars).
% 1.96/2.13     dependent: set(eq_units_both_ways).
% 1.96/2.13     dependent: set(dynamic_demod_all).
% 1.96/2.13     dependent: set(dynamic_demod).
% 1.96/2.13     dependent: set(order_eq).
% 1.96/2.13     dependent: set(back_demod).
% 1.96/2.13     dependent: set(lrpo).
% 1.96/2.13  
% 1.96/2.13  ------------> process usable:
% 1.96/2.13  ** KEPT (pick-wt=9): 2 [copy,1,flip.1] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1).
% 1.96/2.13  
% 1.96/2.13  ------------> process sos:
% 1.96/2.13  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.96/2.13  ** KEPT (pick-wt=19): 4 [] divide(A,divide(divide(divide(divide(A,A),B),C),divide(divide(divide(A,A),A),C)))=B.
% 1.96/2.13  ---> New Demodulator: 5 [new_demod,4] divide(A,divide(divide(divide(divide(A,A),B),C),divide(divide(divide(A,A),A),C)))=B.
% 1.96/2.13  ** KEPT (pick-wt=11): 6 [] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.96/2.13  ** KEPT (pick-wt=8): 7 [] inverse(A)=divide(divide(B,B),A).
% 1.96/2.13    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.96/2.13  >>>> Starting back demodulation with 5.
% 1.96/2.13  ** KEPT (pick-wt=11): 8 [copy,6,flip.1] divide(A,divide(divide(B,B),C))=multiply(A,C).
% 1.96/2.13  ** KEPT (pick-wt=8): 9 [copy,7,flip.1] divide(divide(A,A),B)=inverse(B).
% 1.96/2.13    Following clause subsumed by 6 during input processing: 0 [copy,8,flip.1] multiply(A,B)=divide(A,divide(divide(C,C),B)).
% 1.96/2.13    Following clause subsumed by 7 during input processing: 0 [copy,9,flip.1] inverse(A)=divide(divide(B,B),A).
% 1.96/2.13  
% 1.96/2.13  ======= end of input processing =======
% 1.96/2.13  
% 1.96/2.13  =========== start of search ===========
% 1.96/2.13  
% 1.96/2.13  
% 1.96/2.13  Resetting weight limit to 12.
% 1.96/2.13  
% 1.96/2.13  
% 1.96/2.13  Resetting weight limit to 12.
% 1.96/2.13  
% 1.96/2.13  sos_size=275
% 1.96/2.13  
% 1.96/2.13  -------- PROOF -------- 
% 1.96/2.13  
% 1.96/2.13  ----> UNIT CONFLICT at   0.03 sec ----> 365 [binary,364.1,361.1] $F.
% 1.96/2.13  
% 1.96/2.13  Length of proof is 15.  Level of proof is 7.
% 1.96/2.13  
% 1.96/2.13  ---------------- PROOF ----------------
% 1.96/2.13  % SZS status Unsatisfiable
% 1.96/2.13  % SZS output start Refutation
% See solution above
% 1.96/2.13  ------------ end of proof -------------
% 1.96/2.13  
% 1.96/2.13  
% 1.96/2.13  Search stopped by max_proofs option.
% 1.96/2.13  
% 1.96/2.13  
% 1.96/2.13  Search stopped by max_proofs option.
% 1.96/2.13  
% 1.96/2.13  ============ end of search ============
% 1.96/2.13  
% 1.96/2.13  -------------- statistics -------------
% 1.96/2.13  clauses given                 62
% 1.96/2.13  clauses generated           2578
% 1.96/2.13  clauses kept                 333
% 1.96/2.13  clauses forward subsumed     440
% 1.96/2.13  clauses back subsumed          0
% 1.96/2.13  Kbytes malloced             4882
% 1.96/2.13  
% 1.96/2.13  ----------- times (seconds) -----------
% 1.96/2.13  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 1.96/2.13  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.96/2.13  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.96/2.13  
% 1.96/2.13  That finishes the proof of the theorem.
% 1.96/2.13  
% 1.96/2.13  Process 12788 finished Wed Jul 27 05:16:02 2022
% 1.96/2.13  Otter interrupted
% 1.96/2.13  PROOF FOUND
%------------------------------------------------------------------------------