TSTP Solution File: GRP433-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP433-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:00 EDT 2022

% Result   : Unsatisfiable 1.65s 1.91s
% Output   : Refutation 1.65s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   21
%            Number of leaves      :    2
% Syntax   : Number of clauses     :   47 (  47 unt;   0 nHn;   4 RR)
%            Number of literals    :   47 (  46 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :   13 (   3 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    4 (   4 usr;   2 con; 0-2 aty)
%            Number of variables   :  125 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('GRP433-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(inverse(b1),b1) != multiply(inverse(a1),a1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    inverse(multiply(multiply(multiply(inverse(multiply(multiply(A,B),C)),A),B),multiply(D,inverse(D)))) = C,
    file('GRP433-1.p',unknown),
    [] ).

cnf(6,plain,
    inverse(multiply(multiply(multiply(A,multiply(inverse(multiply(multiply(B,C),A)),B)),C),multiply(D,inverse(D)))) = multiply(E,inverse(E)),
    inference(para_into,[status(thm),theory(equality)],[4,4]),
    [iquote('para_into,4.1.1.1.1.1.1,4.1.1')] ).

cnf(14,plain,
    multiply(A,inverse(A)) = multiply(B,inverse(B)),
    inference(para_into,[status(thm),theory(equality)],[6,6]),
    [iquote('para_into,6.1.1,6.1.1')] ).

cnf(28,plain,
    inverse(multiply(multiply(multiply(inverse(multiply(A,inverse(A))),B),C),multiply(D,inverse(D)))) = inverse(multiply(B,C)),
    inference(para_from,[status(thm),theory(equality)],[14,4]),
    [iquote('para_from,14.1.1,4.1.1.1.1.1.1.1')] ).

cnf(29,plain,
    inverse(multiply(multiply(multiply(inverse(multiply(multiply(A,inverse(A)),B)),C),inverse(C)),multiply(D,inverse(D)))) = B,
    inference(para_from,[status(thm),theory(equality)],[14,4]),
    [iquote('para_from,14.1.1,4.1.1.1.1.1.1.1.1')] ).

cnf(39,plain,
    inverse(multiply(multiply(multiply(A,inverse(A)),B),multiply(C,inverse(C)))) = inverse(multiply(inverse(inverse(multiply(D,inverse(D)))),B)),
    inference(para_into,[status(thm),theory(equality)],[28,14]),
    [iquote('para_into,27.1.1.1.1.1,14.1.1')] ).

cnf(48,plain,
    inverse(multiply(inverse(inverse(multiply(A,inverse(A)))),B)) = inverse(multiply(multiply(multiply(C,inverse(C)),B),multiply(D,inverse(D)))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[39])]),
    [iquote('copy,39,flip.1')] ).

cnf(105,plain,
    inverse(multiply(A,inverse(A))) = inverse(multiply(B,inverse(B))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[29,14]),28]),
    [iquote('para_into,29.1.1.1.1.1.1.1,14.1.1,demod,28')] ).

cnf(158,plain,
    multiply(multiply(A,inverse(A)),inverse(multiply(B,inverse(B)))) = multiply(C,inverse(C)),
    inference(para_from,[status(thm),theory(equality)],[105,14]),
    [iquote('para_from,105.1.1,14.1.1.2')] ).

cnf(172,plain,
    multiply(A,inverse(A)) = multiply(multiply(B,inverse(B)),inverse(multiply(C,inverse(C)))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[158])]),
    [iquote('copy,158,flip.1')] ).

cnf(203,plain,
    inverse(multiply(multiply(inverse(multiply(A,inverse(A))),B),inverse(B))) = multiply(C,inverse(C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[158,6]),28]),
    [iquote('para_from,158.1.1,6.1.1.1.1.1.2.1.1,demod,28')] ).

cnf(221,plain,
    inverse(multiply(multiply(multiply(multiply(A,inverse(A)),inverse(multiply(B,inverse(B)))),inverse(inverse(inverse(multiply(multiply(C,inverse(C)),D))))),multiply(E,inverse(E)))) = D,
    inference(para_from,[status(thm),theory(equality)],[172,29]),
    [iquote('para_from,172.1.1,29.1.1.1.1.1')] ).

cnf(224,plain,
    inverse(multiply(multiply(multiply(multiply(A,inverse(A)),inverse(multiply(B,inverse(B)))),C),multiply(D,inverse(D)))) = inverse(multiply(inverse(inverse(multiply(E,inverse(E)))),C)),
    inference(para_from,[status(thm),theory(equality)],[172,28]),
    [iquote('para_from,172.1.1,27.1.1.1.1.1')] ).

cnf(236,plain,
    inverse(multiply(inverse(inverse(multiply(A,inverse(A)))),B)) = inverse(multiply(multiply(multiply(multiply(C,inverse(C)),inverse(multiply(D,inverse(D)))),B),multiply(E,inverse(E)))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[224])]),
    [iquote('copy,224,flip.1')] ).

cnf(297,plain,
    inverse(multiply(multiply(multiply(multiply(A,inverse(A)),inverse(multiply(B,inverse(B)))),C),multiply(D,inverse(D)))) = inverse(C),
    inference(para_from,[status(thm),theory(equality)],[203,4]),
    [iquote('para_from,203.1.1,4.1.1.1.1.1.1')] ).

cnf(300,plain,
    inverse(multiply(inverse(inverse(multiply(A,inverse(A)))),B)) = inverse(B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[236]),297]),
    [iquote('back_demod,236,demod,297')] ).

cnf(302,plain,
    inverse(inverse(inverse(inverse(multiply(multiply(A,inverse(A)),B))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[221]),297]),
    [iquote('back_demod,221,demod,297')] ).

cnf(305,plain,
    inverse(multiply(multiply(multiply(A,inverse(A)),B),multiply(C,inverse(C)))) = inverse(B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[48]),300])]),
    [iquote('back_demod,48,demod,300,flip.1')] ).

cnf(333,plain,
    inverse(inverse(inverse(inverse(multiply(multiply(inverse(inverse(inverse(multiply(multiply(A,inverse(A)),B)))),B),C))))) = C,
    inference(para_into,[status(thm),theory(equality)],[302,302]),
    [iquote('para_into,301.1.1.1.1.1.1.1.2,301.1.1')] ).

cnf(335,plain,
    inverse(inverse(inverse(inverse(multiply(multiply(multiply(inverse(inverse(multiply(A,inverse(A)))),B),inverse(B)),C))))) = C,
    inference(para_into,[status(thm),theory(equality)],[302,300]),
    [iquote('para_into,301.1.1.1.1.1.1.1.2,299.1.1')] ).

cnf(344,plain,
    multiply(inverse(inverse(inverse(multiply(multiply(A,inverse(A)),B)))),B) = multiply(C,inverse(C)),
    inference(para_from,[status(thm),theory(equality)],[302,14]),
    [iquote('para_from,301.1.1,14.1.1.2')] ).

cnf(351,plain,
    multiply(A,inverse(A)) = multiply(inverse(inverse(inverse(multiply(multiply(B,inverse(B)),C)))),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[344])]),
    [iquote('copy,344,flip.1')] ).

cnf(379,plain,
    inverse(multiply(multiply(multiply(inverse(inverse(inverse(multiply(multiply(A,inverse(A)),B)))),B),C),multiply(D,inverse(D)))) = inverse(C),
    inference(para_into,[status(thm),theory(equality)],[305,302]),
    [iquote('para_into,305.1.1.1.1.1.2,301.1.1')] ).

cnf(388,plain,
    inverse(multiply(multiply(multiply(A,inverse(A)),B),multiply(multiply(C,inverse(C)),inverse(multiply(D,inverse(D)))))) = inverse(B),
    inference(para_into,[status(thm),theory(equality)],[305,105]),
    [iquote('para_into,305.1.1.1.2.2,105.1.1')] ).

cnf(390,plain,
    inverse(inverse(inverse(inverse(inverse(multiply(A,inverse(A))))))) = multiply(B,inverse(B)),
    inference(para_from,[status(thm),theory(equality)],[305,302]),
    [iquote('para_from,305.1.1,301.1.1.1.1.1')] ).

cnf(433,plain,
    inverse(inverse(multiply(A,inverse(A)))) = multiply(B,inverse(B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[390,105]),302]),
    [iquote('para_into,390.1.1.1.1.1.1.1.2,105.1.1,demod,302')] ).

cnf(471,plain,
    inverse(multiply(multiply(A,inverse(A)),B)) = inverse(B),
    inference(para_from,[status(thm),theory(equality)],[433,300]),
    [iquote('para_from,433.1.1,299.1.1.1.1')] ).

cnf(472,plain,
    inverse(multiply(multiply(multiply(inverse(A),inverse(multiply(B,inverse(B)))),multiply(C,inverse(C))),multiply(D,inverse(D)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[433,29]),471]),
    [iquote('para_from,433.1.1,29.1.1.1.1.2,demod,471')] ).

cnf(509,plain,
    inverse(multiply(multiply(multiply(inverse(inverse(inverse(A))),A),B),multiply(C,inverse(C)))) = inverse(B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[379]),471]),
    [iquote('back_demod,379,demod,471')] ).

cnf(521,plain,
    multiply(A,inverse(A)) = multiply(inverse(inverse(inverse(B))),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[351]),471]),
    [iquote('back_demod,351,demod,471')] ).

cnf(528,plain,
    multiply(inverse(inverse(inverse(A))),A) = multiply(B,inverse(B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[344]),471]),
    [iquote('back_demod,344,demod,471')] ).

cnf(531,plain,
    inverse(inverse(inverse(inverse(multiply(multiply(inverse(inverse(inverse(A))),A),B))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[333]),471]),
    [iquote('back_demod,333,demod,471')] ).

cnf(538,plain,
    inverse(inverse(inverse(inverse(A)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[302]),471]),
    [iquote('back_demod,301,demod,471')] ).

cnf(574,plain,
    multiply(multiply(inverse(inverse(inverse(A))),A),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[531]),538]),
    [iquote('back_demod,531,demod,538')] ).

cnf(603,plain,
    multiply(multiply(multiply(inverse(inverse(multiply(A,inverse(A)))),B),inverse(B)),C) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[335]),538]),
    [iquote('back_demod,335,demod,538')] ).

cnf(614,plain,
    inverse(multiply(A,multiply(B,inverse(B)))) = inverse(A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[509]),574]),
    [iquote('back_demod,509,demod,574')] ).

cnf(629,plain,
    inverse(multiply(inverse(A),inverse(multiply(B,inverse(B))))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[472]),614,614]),
    [iquote('back_demod,472,demod,614,614')] ).

cnf(642,plain,
    multiply(inverse(inverse(multiply(A,inverse(A)))),B) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[538,300]),538])]),
    [iquote('para_into,537.1.1.1.1.1,299.1.1,demod,538,flip.1')] ).

cnf(644,plain,
    multiply(multiply(A,inverse(A)),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[603]),642]),
    [iquote('back_demod,603,demod,642')] ).

cnf(662,plain,
    inverse(multiply(A,inverse(multiply(B,inverse(B))))) = inverse(A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[388]),644,644]),
    [iquote('back_demod,388,demod,644,644')] ).

cnf(670,plain,
    inverse(inverse(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[629]),662]),
    [iquote('back_demod,629,demod,662')] ).

cnf(681,plain,
    multiply(inverse(A),A) = multiply(B,inverse(B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[528]),670]),
    [iquote('back_demod,528,demod,670')] ).

cnf(683,plain,
    multiply(A,inverse(A)) = multiply(inverse(B),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[521]),670]),
    [iquote('back_demod,521,demod,670')] ).

cnf(687,plain,
    multiply(A,inverse(A)) != multiply(inverse(a1),a1),
    inference(para_from,[status(thm),theory(equality)],[681,2]),
    [iquote('para_from,681.1.1,2.1.1')] ).

cnf(688,plain,
    $false,
    inference(binary,[status(thm)],[687,683]),
    [iquote('binary,687.1,683.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP433-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n019.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:12:52 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.65/1.91  ----- Otter 3.3f, August 2004 -----
% 1.65/1.91  The process was started by sandbox on n019.cluster.edu,
% 1.65/1.91  Wed Jul 27 05:12:52 2022
% 1.65/1.91  The command was "./otter".  The process ID is 27911.
% 1.65/1.91  
% 1.65/1.91  set(prolog_style_variables).
% 1.65/1.91  set(auto).
% 1.65/1.91     dependent: set(auto1).
% 1.65/1.91     dependent: set(process_input).
% 1.65/1.91     dependent: clear(print_kept).
% 1.65/1.91     dependent: clear(print_new_demod).
% 1.65/1.91     dependent: clear(print_back_demod).
% 1.65/1.91     dependent: clear(print_back_sub).
% 1.65/1.91     dependent: set(control_memory).
% 1.65/1.91     dependent: assign(max_mem, 12000).
% 1.65/1.91     dependent: assign(pick_given_ratio, 4).
% 1.65/1.91     dependent: assign(stats_level, 1).
% 1.65/1.91     dependent: assign(max_seconds, 10800).
% 1.65/1.91  clear(print_given).
% 1.65/1.91  
% 1.65/1.91  list(usable).
% 1.65/1.91  0 [] A=A.
% 1.65/1.91  0 [] inverse(multiply(multiply(multiply(inverse(multiply(multiply(A,B),C)),A),B),multiply(D,inverse(D))))=C.
% 1.65/1.91  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1).
% 1.65/1.91  end_of_list.
% 1.65/1.91  
% 1.65/1.91  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.65/1.91  
% 1.65/1.91  All clauses are units, and equality is present; the
% 1.65/1.91  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.65/1.91  
% 1.65/1.91     dependent: set(knuth_bendix).
% 1.65/1.91     dependent: set(anl_eq).
% 1.65/1.91     dependent: set(para_from).
% 1.65/1.91     dependent: set(para_into).
% 1.65/1.91     dependent: clear(para_from_right).
% 1.65/1.91     dependent: clear(para_into_right).
% 1.65/1.91     dependent: set(para_from_vars).
% 1.65/1.91     dependent: set(eq_units_both_ways).
% 1.65/1.91     dependent: set(dynamic_demod_all).
% 1.65/1.91     dependent: set(dynamic_demod).
% 1.65/1.91     dependent: set(order_eq).
% 1.65/1.91     dependent: set(back_demod).
% 1.65/1.91     dependent: set(lrpo).
% 1.65/1.91  
% 1.65/1.91  ------------> process usable:
% 1.65/1.91  ** KEPT (pick-wt=9): 2 [copy,1,flip.1] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1).
% 1.65/1.91  
% 1.65/1.91  ------------> process sos:
% 1.65/1.91  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.65/1.91  ** KEPT (pick-wt=18): 4 [] inverse(multiply(multiply(multiply(inverse(multiply(multiply(A,B),C)),A),B),multiply(D,inverse(D))))=C.
% 1.65/1.91  ---> New Demodulator: 5 [new_demod,4] inverse(multiply(multiply(multiply(inverse(multiply(multiply(A,B),C)),A),B),multiply(D,inverse(D))))=C.
% 1.65/1.91    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.65/1.91  >>>> Starting back demodulation with 5.
% 1.65/1.91  
% 1.65/1.91  ======= end of input processing =======
% 1.65/1.91  
% 1.65/1.91  =========== start of search ===========
% 1.65/1.91  
% 1.65/1.91  
% 1.65/1.91  Resetting weight limit to 22.
% 1.65/1.91  
% 1.65/1.91  
% 1.65/1.91  Resetting weight limit to 22.
% 1.65/1.91  
% 1.65/1.91  sos_size=205
% 1.65/1.91  
% 1.65/1.91  -------- PROOF -------- 
% 1.65/1.91  
% 1.65/1.91  ----> UNIT CONFLICT at   0.04 sec ----> 688 [binary,687.1,683.1] $F.
% 1.65/1.91  
% 1.65/1.91  Length of proof is 44.  Level of proof is 20.
% 1.65/1.91  
% 1.65/1.91  ---------------- PROOF ----------------
% 1.65/1.91  % SZS status Unsatisfiable
% 1.65/1.91  % SZS output start Refutation
% See solution above
% 1.65/1.92  ------------ end of proof -------------
% 1.65/1.92  
% 1.65/1.92  
% 1.65/1.92  Search stopped by max_proofs option.
% 1.65/1.92  
% 1.65/1.92  
% 1.65/1.92  Search stopped by max_proofs option.
% 1.65/1.92  
% 1.65/1.92  ============ end of search ============
% 1.65/1.92  
% 1.65/1.92  -------------- statistics -------------
% 1.65/1.92  clauses given                 29
% 1.65/1.92  clauses generated           1050
% 1.65/1.92  clauses kept                 544
% 1.65/1.92  clauses forward subsumed     749
% 1.65/1.92  clauses back subsumed          0
% 1.65/1.92  Kbytes malloced             6835
% 1.65/1.92  
% 1.65/1.92  ----------- times (seconds) -----------
% 1.65/1.92  user CPU time          0.04          (0 hr, 0 min, 0 sec)
% 1.65/1.92  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.65/1.92  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.65/1.92  
% 1.65/1.92  That finishes the proof of the theorem.
% 1.65/1.92  
% 1.65/1.92  Process 27911 finished Wed Jul 27 05:12:53 2022
% 1.65/1.92  Otter interrupted
% 1.65/1.92  PROOF FOUND
%------------------------------------------------------------------------------